Athermal electric field‐induced restructuring of glass during poling

Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-06, Vol.104 (6), p.2588-2599
Hauptverfasser: McLaren, Charles T., Kopatz, Craig R., Fahey, Albert J., Smith, Nicholas J., Jain, Himanshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2599
container_issue 6
container_start_page 2588
container_title Journal of the American Ceramic Society
container_volume 104
creator McLaren, Charles T.
Kopatz, Craig R.
Fahey, Albert J.
Smith, Nicholas J.
Jain, Himanshu
description Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.
doi_str_mv 10.1111/jace.17642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509223003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2E7in2VUtfyoEhtYW44zLoncpNiJUHccgTNyElzCmtk8PembmaeH0DXBCxLnrtUGFoSznJ6gGSkKklJJ2CmaYYxpygXF5-gihDZaIkU-Q-tyeAO_0y4BB2bwjUlsA67-_vxquno0UCcewuBHM4y-6bZJb5Ot0yEk9eT3vYtyic6sdgGu_nSOXterl-VDunm-f1yWm9RQFgMITgRwy6wEIa3JCVS5lrSuOONgc16wTFuRUxvTUltYzAXUklkwBatkZbI5upnu7n3_PsZgqu1H38WXihZYUpphnEXqdqKM70PwYNXeNzvtD4pgdexJHXtSvz1FmEzwR-Pg8A-pnsrlatr5Aejca8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223003</pqid></control><display><type>article</type><title>Athermal electric field‐induced restructuring of glass during poling</title><source>Wiley Journals</source><creator>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</creator><creatorcontrib>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</creatorcontrib><description>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17642</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>alkali migration ; Anodes ; Deoxidizing ; Depletion ; depletion layer ; Electric fields ; Electrolysis ; glass ; Glass transition temperature ; In situ measurement ; Infrared imaging ; joule heating ; Metal ions ; Ohmic dissipation ; poling ; Resistance heating ; SIMS ; structure ; Temperature ; thermal imaging ; X ray photoelectron spectroscopy ; XPS</subject><ispartof>Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2588-2599</ispartof><rights>2020 The American Ceramic Society (ACERS)</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</cites><orcidid>0000-0001-9490-9845 ; 0000-0002-8726-9525 ; 0000-0003-4382-9460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>McLaren, Charles T.</creatorcontrib><creatorcontrib>Kopatz, Craig R.</creatorcontrib><creatorcontrib>Fahey, Albert J.</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Jain, Himanshu</creatorcontrib><title>Athermal electric field‐induced restructuring of glass during poling</title><title>Journal of the American Ceramic Society</title><description>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</description><subject>alkali migration</subject><subject>Anodes</subject><subject>Deoxidizing</subject><subject>Depletion</subject><subject>depletion layer</subject><subject>Electric fields</subject><subject>Electrolysis</subject><subject>glass</subject><subject>Glass transition temperature</subject><subject>In situ measurement</subject><subject>Infrared imaging</subject><subject>joule heating</subject><subject>Metal ions</subject><subject>Ohmic dissipation</subject><subject>poling</subject><subject>Resistance heating</subject><subject>SIMS</subject><subject>structure</subject><subject>Temperature</subject><subject>thermal imaging</subject><subject>X ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2E7in2VUtfyoEhtYW44zLoncpNiJUHccgTNyElzCmtk8PembmaeH0DXBCxLnrtUGFoSznJ6gGSkKklJJ2CmaYYxpygXF5-gihDZaIkU-Q-tyeAO_0y4BB2bwjUlsA67-_vxquno0UCcewuBHM4y-6bZJb5Ot0yEk9eT3vYtyic6sdgGu_nSOXterl-VDunm-f1yWm9RQFgMITgRwy6wEIa3JCVS5lrSuOONgc16wTFuRUxvTUltYzAXUklkwBatkZbI5upnu7n3_PsZgqu1H38WXihZYUpphnEXqdqKM70PwYNXeNzvtD4pgdexJHXtSvz1FmEzwR-Pg8A-pnsrlatr5Aejca8E</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>McLaren, Charles T.</creator><creator>Kopatz, Craig R.</creator><creator>Fahey, Albert J.</creator><creator>Smith, Nicholas J.</creator><creator>Jain, Himanshu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9490-9845</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-4382-9460</orcidid></search><sort><creationdate>202106</creationdate><title>Athermal electric field‐induced restructuring of glass during poling</title><author>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alkali migration</topic><topic>Anodes</topic><topic>Deoxidizing</topic><topic>Depletion</topic><topic>depletion layer</topic><topic>Electric fields</topic><topic>Electrolysis</topic><topic>glass</topic><topic>Glass transition temperature</topic><topic>In situ measurement</topic><topic>Infrared imaging</topic><topic>joule heating</topic><topic>Metal ions</topic><topic>Ohmic dissipation</topic><topic>poling</topic><topic>Resistance heating</topic><topic>SIMS</topic><topic>structure</topic><topic>Temperature</topic><topic>thermal imaging</topic><topic>X ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaren, Charles T.</creatorcontrib><creatorcontrib>Kopatz, Craig R.</creatorcontrib><creatorcontrib>Fahey, Albert J.</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Jain, Himanshu</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLaren, Charles T.</au><au>Kopatz, Craig R.</au><au>Fahey, Albert J.</au><au>Smith, Nicholas J.</au><au>Jain, Himanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Athermal electric field‐induced restructuring of glass during poling</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-06</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>2588</spage><epage>2599</epage><pages>2588-2599</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9490-9845</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-4382-9460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2588-2599
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2509223003
source Wiley Journals
subjects alkali migration
Anodes
Deoxidizing
Depletion
depletion layer
Electric fields
Electrolysis
glass
Glass transition temperature
In situ measurement
Infrared imaging
joule heating
Metal ions
Ohmic dissipation
poling
Resistance heating
SIMS
structure
Temperature
thermal imaging
X ray photoelectron spectroscopy
XPS
title Athermal electric field‐induced restructuring of glass during poling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Athermal%20electric%20field%E2%80%90induced%20restructuring%20of%20glass%20during%20poling&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=McLaren,%20Charles%20T.&rft.date=2021-06&rft.volume=104&rft.issue=6&rft.spage=2588&rft.epage=2599&rft.pages=2588-2599&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17642&rft_dat=%3Cproquest_cross%3E2509223003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223003&rft_id=info:pmid/&rfr_iscdi=true