Athermal electric field‐induced restructuring of glass during poling
Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically,...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2021-06, Vol.104 (6), p.2588-2599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2599 |
---|---|
container_issue | 6 |
container_start_page | 2588 |
container_title | Journal of the American Ceramic Society |
container_volume | 104 |
creator | McLaren, Charles T. Kopatz, Craig R. Fahey, Albert J. Smith, Nicholas J. Jain, Himanshu |
description | Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation. |
doi_str_mv | 10.1111/jace.17642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509223003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2E7in2VUtfyoEhtYW44zLoncpNiJUHccgTNyElzCmtk8PembmaeH0DXBCxLnrtUGFoSznJ6gGSkKklJJ2CmaYYxpygXF5-gihDZaIkU-Q-tyeAO_0y4BB2bwjUlsA67-_vxquno0UCcewuBHM4y-6bZJb5Ot0yEk9eT3vYtyic6sdgGu_nSOXterl-VDunm-f1yWm9RQFgMITgRwy6wEIa3JCVS5lrSuOONgc16wTFuRUxvTUltYzAXUklkwBatkZbI5upnu7n3_PsZgqu1H38WXihZYUpphnEXqdqKM70PwYNXeNzvtD4pgdexJHXtSvz1FmEzwR-Pg8A-pnsrlatr5Aejca8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223003</pqid></control><display><type>article</type><title>Athermal electric field‐induced restructuring of glass during poling</title><source>Wiley Journals</source><creator>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</creator><creatorcontrib>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</creatorcontrib><description>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17642</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>alkali migration ; Anodes ; Deoxidizing ; Depletion ; depletion layer ; Electric fields ; Electrolysis ; glass ; Glass transition temperature ; In situ measurement ; Infrared imaging ; joule heating ; Metal ions ; Ohmic dissipation ; poling ; Resistance heating ; SIMS ; structure ; Temperature ; thermal imaging ; X ray photoelectron spectroscopy ; XPS</subject><ispartof>Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2588-2599</ispartof><rights>2020 The American Ceramic Society (ACERS)</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</cites><orcidid>0000-0001-9490-9845 ; 0000-0002-8726-9525 ; 0000-0003-4382-9460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>McLaren, Charles T.</creatorcontrib><creatorcontrib>Kopatz, Craig R.</creatorcontrib><creatorcontrib>Fahey, Albert J.</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Jain, Himanshu</creatorcontrib><title>Athermal electric field‐induced restructuring of glass during poling</title><title>Journal of the American Ceramic Society</title><description>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</description><subject>alkali migration</subject><subject>Anodes</subject><subject>Deoxidizing</subject><subject>Depletion</subject><subject>depletion layer</subject><subject>Electric fields</subject><subject>Electrolysis</subject><subject>glass</subject><subject>Glass transition temperature</subject><subject>In situ measurement</subject><subject>Infrared imaging</subject><subject>joule heating</subject><subject>Metal ions</subject><subject>Ohmic dissipation</subject><subject>poling</subject><subject>Resistance heating</subject><subject>SIMS</subject><subject>structure</subject><subject>Temperature</subject><subject>thermal imaging</subject><subject>X ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGl2E7in2VUtfyoEhtYW44zLoncpNiJUHccgTNyElzCmtk8PembmaeH0DXBCxLnrtUGFoSznJ6gGSkKklJJ2CmaYYxpygXF5-gihDZaIkU-Q-tyeAO_0y4BB2bwjUlsA67-_vxquno0UCcewuBHM4y-6bZJb5Ot0yEk9eT3vYtyic6sdgGu_nSOXterl-VDunm-f1yWm9RQFgMITgRwy6wEIa3JCVS5lrSuOONgc16wTFuRUxvTUltYzAXUklkwBatkZbI5upnu7n3_PsZgqu1H38WXihZYUpphnEXqdqKM70PwYNXeNzvtD4pgdexJHXtSvz1FmEzwR-Pg8A-pnsrlatr5Aejca8E</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>McLaren, Charles T.</creator><creator>Kopatz, Craig R.</creator><creator>Fahey, Albert J.</creator><creator>Smith, Nicholas J.</creator><creator>Jain, Himanshu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9490-9845</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-4382-9460</orcidid></search><sort><creationdate>202106</creationdate><title>Athermal electric field‐induced restructuring of glass during poling</title><author>McLaren, Charles T. ; Kopatz, Craig R. ; Fahey, Albert J. ; Smith, Nicholas J. ; Jain, Himanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2602-8718e7f6f9e89fc41eb4a92db767ef47563af842f0022f5f078ed96fec56b9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alkali migration</topic><topic>Anodes</topic><topic>Deoxidizing</topic><topic>Depletion</topic><topic>depletion layer</topic><topic>Electric fields</topic><topic>Electrolysis</topic><topic>glass</topic><topic>Glass transition temperature</topic><topic>In situ measurement</topic><topic>Infrared imaging</topic><topic>joule heating</topic><topic>Metal ions</topic><topic>Ohmic dissipation</topic><topic>poling</topic><topic>Resistance heating</topic><topic>SIMS</topic><topic>structure</topic><topic>Temperature</topic><topic>thermal imaging</topic><topic>X ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaren, Charles T.</creatorcontrib><creatorcontrib>Kopatz, Craig R.</creatorcontrib><creatorcontrib>Fahey, Albert J.</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Jain, Himanshu</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLaren, Charles T.</au><au>Kopatz, Craig R.</au><au>Fahey, Albert J.</au><au>Smith, Nicholas J.</au><au>Jain, Himanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Athermal electric field‐induced restructuring of glass during poling</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-06</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>2588</spage><epage>2599</epage><pages>2588-2599</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approaching Tg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees below Tg throughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9490-9845</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-4382-9460</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2588-2599 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2509223003 |
source | Wiley Journals |
subjects | alkali migration Anodes Deoxidizing Depletion depletion layer Electric fields Electrolysis glass Glass transition temperature In situ measurement Infrared imaging joule heating Metal ions Ohmic dissipation poling Resistance heating SIMS structure Temperature thermal imaging X ray photoelectron spectroscopy XPS |
title | Athermal electric field‐induced restructuring of glass during poling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Athermal%20electric%20field%E2%80%90induced%20restructuring%20of%20glass%20during%20poling&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=McLaren,%20Charles%20T.&rft.date=2021-06&rft.volume=104&rft.issue=6&rft.spage=2588&rft.epage=2599&rft.pages=2588-2599&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17642&rft_dat=%3Cproquest_cross%3E2509223003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223003&rft_id=info:pmid/&rfr_iscdi=true |