Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles
Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. R...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2021-06, Vol.104 (6), p.2820-2835 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2835 |
---|---|
container_issue | 6 |
container_start_page | 2820 |
container_title | Journal of the American Ceramic Society |
container_volume | 104 |
creator | Dong, Bai‐Xin Ma, Xu‐Dong Liu, Tian‐Shu Li, Qiang Yang, Hong‐Yu Shu, Shi‐Li Zhang, Bing‐Qi Qiu, Feng Jiang, Qi‐Chuan |
description | Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications. |
doi_str_mv | 10.1111/jace.17699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509222989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509222989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsX_4KAN2Frkt3sJsdS6hcFQeo5zKYTmrJfJlu1_73brmfnMjz4vZnHI-SWsxkf5mEHFme8yLU-IxMuJU-E5vk5mTDGRFIowS7JVYy7QXKtsgkp3xFs79uGlriFL9-GSKHZ0Nih9c5bij9dG3FDbTjEHiraVdBgpDU0vttXcLLWaLeDjjVtHV37BW2gaTsIvbcVxmty4aCKePO3p-TjcblePCert6eXxXyV2HQIkyiZcS0Vt0XJEDF1jmUaVKpyyJksRSZyUE6gK6UFnWGBym60LVFm1qUZS6fkbrzbhfZzj7E3u3YfmuGlEZJpIYRWeqDuR8qGNsaAznTB1xAOhjNz7NAcOzSnDgeYj_C3r_DwD2le54vl6PkFhGh1kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509222989</pqid></control><display><type>article</type><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><source>Access via Wiley Online Library</source><creator>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</creator><creatorcontrib>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</creatorcontrib><description>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17699</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Al/TiC interface ; alloying element atoms adsorption ; Alloying elements ; Aluminum carbide ; Charge density ; Copper ; Crystals ; Density functional theory ; exposed crystal planes manipulation ; Exposure ; Magnesium ; Manganese ; Morphology ; Nanoparticles ; reaction behaviors ; Silicon ; Stability ; TiC nanoparticles ; Titanium carbide ; Zinc</subject><ispartof>Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2820-2835</ispartof><rights>2021 The American Ceramic Society</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</citedby><cites>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</cites><orcidid>0000-0003-4741-7906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dong, Bai‐Xin</creatorcontrib><creatorcontrib>Ma, Xu‐Dong</creatorcontrib><creatorcontrib>Liu, Tian‐Shu</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yang, Hong‐Yu</creatorcontrib><creatorcontrib>Shu, Shi‐Li</creatorcontrib><creatorcontrib>Zhang, Bing‐Qi</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Jiang, Qi‐Chuan</creatorcontrib><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><title>Journal of the American Ceramic Society</title><description>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</description><subject>Al/TiC interface</subject><subject>alloying element atoms adsorption</subject><subject>Alloying elements</subject><subject>Aluminum carbide</subject><subject>Charge density</subject><subject>Copper</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>exposed crystal planes manipulation</subject><subject>Exposure</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>reaction behaviors</subject><subject>Silicon</subject><subject>Stability</subject><subject>TiC nanoparticles</subject><subject>Titanium carbide</subject><subject>Zinc</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsX_4KAN2Frkt3sJsdS6hcFQeo5zKYTmrJfJlu1_73brmfnMjz4vZnHI-SWsxkf5mEHFme8yLU-IxMuJU-E5vk5mTDGRFIowS7JVYy7QXKtsgkp3xFs79uGlriFL9-GSKHZ0Nih9c5bij9dG3FDbTjEHiraVdBgpDU0vttXcLLWaLeDjjVtHV37BW2gaTsIvbcVxmty4aCKePO3p-TjcblePCert6eXxXyV2HQIkyiZcS0Vt0XJEDF1jmUaVKpyyJksRSZyUE6gK6UFnWGBym60LVFm1qUZS6fkbrzbhfZzj7E3u3YfmuGlEZJpIYRWeqDuR8qGNsaAznTB1xAOhjNz7NAcOzSnDgeYj_C3r_DwD2le54vl6PkFhGh1kw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Dong, Bai‐Xin</creator><creator>Ma, Xu‐Dong</creator><creator>Liu, Tian‐Shu</creator><creator>Li, Qiang</creator><creator>Yang, Hong‐Yu</creator><creator>Shu, Shi‐Li</creator><creator>Zhang, Bing‐Qi</creator><creator>Qiu, Feng</creator><creator>Jiang, Qi‐Chuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4741-7906</orcidid></search><sort><creationdate>202106</creationdate><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><author>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Al/TiC interface</topic><topic>alloying element atoms adsorption</topic><topic>Alloying elements</topic><topic>Aluminum carbide</topic><topic>Charge density</topic><topic>Copper</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>exposed crystal planes manipulation</topic><topic>Exposure</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>reaction behaviors</topic><topic>Silicon</topic><topic>Stability</topic><topic>TiC nanoparticles</topic><topic>Titanium carbide</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bai‐Xin</creatorcontrib><creatorcontrib>Ma, Xu‐Dong</creatorcontrib><creatorcontrib>Liu, Tian‐Shu</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yang, Hong‐Yu</creatorcontrib><creatorcontrib>Shu, Shi‐Li</creatorcontrib><creatorcontrib>Zhang, Bing‐Qi</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Jiang, Qi‐Chuan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bai‐Xin</au><au>Ma, Xu‐Dong</au><au>Liu, Tian‐Shu</au><au>Li, Qiang</au><au>Yang, Hong‐Yu</au><au>Shu, Shi‐Li</au><au>Zhang, Bing‐Qi</au><au>Qiu, Feng</au><au>Jiang, Qi‐Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-06</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>2820</spage><epage>2835</epage><pages>2820-2835</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17699</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4741-7906</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2820-2835 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2509222989 |
source | Access via Wiley Online Library |
subjects | Al/TiC interface alloying element atoms adsorption Alloying elements Aluminum carbide Charge density Copper Crystals Density functional theory exposed crystal planes manipulation Exposure Magnesium Manganese Morphology Nanoparticles reaction behaviors Silicon Stability TiC nanoparticles Titanium carbide Zinc |
title | Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20behaviors%20and%20specific%20exposed%20crystal%20planes%20manipulation%20mechanism%20of%20TiC%20nanoparticles&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Dong,%20Bai%E2%80%90Xin&rft.date=2021-06&rft.volume=104&rft.issue=6&rft.spage=2820&rft.epage=2835&rft.pages=2820-2835&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17699&rft_dat=%3Cproquest_cross%3E2509222989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509222989&rft_id=info:pmid/&rfr_iscdi=true |