Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles

Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-06, Vol.104 (6), p.2820-2835
Hauptverfasser: Dong, Bai‐Xin, Ma, Xu‐Dong, Liu, Tian‐Shu, Li, Qiang, Yang, Hong‐Yu, Shu, Shi‐Li, Zhang, Bing‐Qi, Qiu, Feng, Jiang, Qi‐Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2835
container_issue 6
container_start_page 2820
container_title Journal of the American Ceramic Society
container_volume 104
creator Dong, Bai‐Xin
Ma, Xu‐Dong
Liu, Tian‐Shu
Li, Qiang
Yang, Hong‐Yu
Shu, Shi‐Li
Zhang, Bing‐Qi
Qiu, Feng
Jiang, Qi‐Chuan
description Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.
doi_str_mv 10.1111/jace.17699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509222989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509222989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsX_4KAN2Frkt3sJsdS6hcFQeo5zKYTmrJfJlu1_73brmfnMjz4vZnHI-SWsxkf5mEHFme8yLU-IxMuJU-E5vk5mTDGRFIowS7JVYy7QXKtsgkp3xFs79uGlriFL9-GSKHZ0Nih9c5bij9dG3FDbTjEHiraVdBgpDU0vttXcLLWaLeDjjVtHV37BW2gaTsIvbcVxmty4aCKePO3p-TjcblePCert6eXxXyV2HQIkyiZcS0Vt0XJEDF1jmUaVKpyyJksRSZyUE6gK6UFnWGBym60LVFm1qUZS6fkbrzbhfZzj7E3u3YfmuGlEZJpIYRWeqDuR8qGNsaAznTB1xAOhjNz7NAcOzSnDgeYj_C3r_DwD2le54vl6PkFhGh1kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509222989</pqid></control><display><type>article</type><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><source>Access via Wiley Online Library</source><creator>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</creator><creatorcontrib>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</creatorcontrib><description>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17699</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Al/TiC interface ; alloying element atoms adsorption ; Alloying elements ; Aluminum carbide ; Charge density ; Copper ; Crystals ; Density functional theory ; exposed crystal planes manipulation ; Exposure ; Magnesium ; Manganese ; Morphology ; Nanoparticles ; reaction behaviors ; Silicon ; Stability ; TiC nanoparticles ; Titanium carbide ; Zinc</subject><ispartof>Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2820-2835</ispartof><rights>2021 The American Ceramic Society</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</citedby><cites>FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</cites><orcidid>0000-0003-4741-7906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dong, Bai‐Xin</creatorcontrib><creatorcontrib>Ma, Xu‐Dong</creatorcontrib><creatorcontrib>Liu, Tian‐Shu</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yang, Hong‐Yu</creatorcontrib><creatorcontrib>Shu, Shi‐Li</creatorcontrib><creatorcontrib>Zhang, Bing‐Qi</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Jiang, Qi‐Chuan</creatorcontrib><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><title>Journal of the American Ceramic Society</title><description>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</description><subject>Al/TiC interface</subject><subject>alloying element atoms adsorption</subject><subject>Alloying elements</subject><subject>Aluminum carbide</subject><subject>Charge density</subject><subject>Copper</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>exposed crystal planes manipulation</subject><subject>Exposure</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>reaction behaviors</subject><subject>Silicon</subject><subject>Stability</subject><subject>TiC nanoparticles</subject><subject>Titanium carbide</subject><subject>Zinc</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsX_4KAN2Frkt3sJsdS6hcFQeo5zKYTmrJfJlu1_73brmfnMjz4vZnHI-SWsxkf5mEHFme8yLU-IxMuJU-E5vk5mTDGRFIowS7JVYy7QXKtsgkp3xFs79uGlriFL9-GSKHZ0Nih9c5bij9dG3FDbTjEHiraVdBgpDU0vttXcLLWaLeDjjVtHV37BW2gaTsIvbcVxmty4aCKePO3p-TjcblePCert6eXxXyV2HQIkyiZcS0Vt0XJEDF1jmUaVKpyyJksRSZyUE6gK6UFnWGBym60LVFm1qUZS6fkbrzbhfZzj7E3u3YfmuGlEZJpIYRWeqDuR8qGNsaAznTB1xAOhjNz7NAcOzSnDgeYj_C3r_DwD2le54vl6PkFhGh1kw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Dong, Bai‐Xin</creator><creator>Ma, Xu‐Dong</creator><creator>Liu, Tian‐Shu</creator><creator>Li, Qiang</creator><creator>Yang, Hong‐Yu</creator><creator>Shu, Shi‐Li</creator><creator>Zhang, Bing‐Qi</creator><creator>Qiu, Feng</creator><creator>Jiang, Qi‐Chuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4741-7906</orcidid></search><sort><creationdate>202106</creationdate><title>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</title><author>Dong, Bai‐Xin ; Ma, Xu‐Dong ; Liu, Tian‐Shu ; Li, Qiang ; Yang, Hong‐Yu ; Shu, Shi‐Li ; Zhang, Bing‐Qi ; Qiu, Feng ; Jiang, Qi‐Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-85419581c7b0eee3ff049a8386a605b2426a8f2efb5ca94e7e8cd9cbe54cf3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Al/TiC interface</topic><topic>alloying element atoms adsorption</topic><topic>Alloying elements</topic><topic>Aluminum carbide</topic><topic>Charge density</topic><topic>Copper</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>exposed crystal planes manipulation</topic><topic>Exposure</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>reaction behaviors</topic><topic>Silicon</topic><topic>Stability</topic><topic>TiC nanoparticles</topic><topic>Titanium carbide</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bai‐Xin</creatorcontrib><creatorcontrib>Ma, Xu‐Dong</creatorcontrib><creatorcontrib>Liu, Tian‐Shu</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yang, Hong‐Yu</creatorcontrib><creatorcontrib>Shu, Shi‐Li</creatorcontrib><creatorcontrib>Zhang, Bing‐Qi</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Jiang, Qi‐Chuan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bai‐Xin</au><au>Ma, Xu‐Dong</au><au>Liu, Tian‐Shu</au><au>Li, Qiang</au><au>Yang, Hong‐Yu</au><au>Shu, Shi‐Li</au><au>Zhang, Bing‐Qi</au><au>Qiu, Feng</au><au>Jiang, Qi‐Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-06</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>2820</spage><epage>2835</epage><pages>2820-2835</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Titanium carbide (TiC) nanoparticles with well‐designed exposed crystal planes perform intriguing prospects for functional and engineering applications. In this study, a simple and controllable in situ synthesis strategy was proposed for the synthesis of TiC nanoparticles with specific morphology. Reaction behaviors suggested that most of TiC nanoparticles were formed by an instantaneous reaction between Al3Ti and Al4C3 in the Al‐rich melt and the resultant morphology was controlled by the discrepant growing rates of (100) and (111) crystal planes. In addition, a growth morphology control model was presented for the prediction and manipulation of the morphology of TiC nanoparticles by the doping of different alloying elements Me (Me = Cu, Mg, Mn, Zn, and Si). According to the morphological observations and density functional theory analyses including the interface energy, charge density differences, and orbital hybridization: Cu, Mg, and Zn atoms could stabilize the Al/TiC(111) interface, whereas Mn and Si atoms promoted the rapid growing and disappearance of the TiC(111) planes in the Al melt. This work provides a feasible way to intelligently design and manipulate TiC nanoparticles with desirable exposed crystal planes, and exhibits a promising prospect for personalized applications.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17699</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4741-7906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-06, Vol.104 (6), p.2820-2835
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2509222989
source Access via Wiley Online Library
subjects Al/TiC interface
alloying element atoms adsorption
Alloying elements
Aluminum carbide
Charge density
Copper
Crystals
Density functional theory
exposed crystal planes manipulation
Exposure
Magnesium
Manganese
Morphology
Nanoparticles
reaction behaviors
Silicon
Stability
TiC nanoparticles
Titanium carbide
Zinc
title Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20behaviors%20and%20specific%20exposed%20crystal%20planes%20manipulation%20mechanism%20of%20TiC%20nanoparticles&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Dong,%20Bai%E2%80%90Xin&rft.date=2021-06&rft.volume=104&rft.issue=6&rft.spage=2820&rft.epage=2835&rft.pages=2820-2835&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17699&rft_dat=%3Cproquest_cross%3E2509222989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509222989&rft_id=info:pmid/&rfr_iscdi=true