Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes

High‐energy‐density lithium‐rich layered oxides (LLOs) hold the greatest promise to address the range anxiety of electric vehicles. Their application, however, has been prevented by fast voltage decay and capacity fading for years, which mainly originate from irreversible transition‐metal migration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-04, Vol.31 (14), p.n/a
Hauptverfasser: Luo, Dong, Cui, Jiaxiang, Zhang, Bingkai, Fan, Jianming, Liu, Peizhi, Ding, Xiaokai, Xie, Huixian, Zhang, Zuhao, Guo, Junjie, Pan, Feng, Lin, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced functional materials
container_volume 31
creator Luo, Dong
Cui, Jiaxiang
Zhang, Bingkai
Fan, Jianming
Liu, Peizhi
Ding, Xiaokai
Xie, Huixian
Zhang, Zuhao
Guo, Junjie
Pan, Feng
Lin, Zhan
description High‐energy‐density lithium‐rich layered oxides (LLOs) hold the greatest promise to address the range anxiety of electric vehicles. Their application, however, has been prevented by fast voltage decay and capacity fading for years, which mainly originate from irreversible transition‐metal migration and undesirable cathode‐electrolyte interfacial reactions. Herein, a Ti‐based surface integrated layer and bulk doping, which greatly improve the voltage and capacity stability of LLOs is synchronously constructed. More importantly, STEM and Raman results demonstrate that continuous and uniform surface Ti‐based integrated layer is a spinel‐like rocksalt structure with Fd‐3m space group, which is built through by several the replacement of Li ions in surface several atomic layers by Ti ions. After 500 cycles, Ti‐150 sample delivers a capacity retention of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle. Spectral results and DFT calculations suggest that bulk Ti‐doping mitigates the migration of Mn and Ni ions in the bulk, while Ti‐based integrated layer significantly suppresses surface structure evolution and interfacial reactions by impeding the generation of surface Li vacancies during Li extraction as well as preventing direct contact between electrolyte and active materials. Ti‐based surface integrated layer and bulk doping are synchronously constructed to mitigate the structural evolution and suppresses interfacial reactions of Li‐rich layered cathodes during long‐term cycling. After 500 cycles, Ti‐treated LLO sample delivers a capacity retention ratio of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle.
doi_str_mv 10.1002/adfm.202009310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509222945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509222945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-58b9b2fade8f0593a1f7e2a17fbc18693cba554bbf01ce1553e84d829352334b3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5WyJc4p_4iY-9odCpSAkWhA3y07sNiWti50I9cYj8Iw8CS5B5chpVrvfzEoDwCVGPYwQuZaFWfcIIghxitER6OA-7kcUkfT4MOOXU3Dm_QohnCQ07gA3L78-PofS6wLOGmdkruF0U-uFk3VYZXKnHZSbAg6b6hWO7bbcLKCxDs5qqSoNn21Vy4X-QTIbbllpNLQmaMh9LPNlmxGyRrJe2kL7c3BiZOX1xa92wdPkZj66i7KH2-lokEU5ZTGKWKq4IkYWOjWIcSqxSTSRODEqx2mf01xJxmKlDMK5xoxRncZFSjhlhNJY0S64anO3zr412tdiZRu3CS8FYYgTQnjMAtVrqdxZ7502YuvKtXQ7gZHY9yr2vYpDr8HAW8N7WendP7QYjCf3f95vNPh9Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509222945</pqid></control><display><type>article</type><title>Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes</title><source>Access via Wiley Online Library</source><creator>Luo, Dong ; Cui, Jiaxiang ; Zhang, Bingkai ; Fan, Jianming ; Liu, Peizhi ; Ding, Xiaokai ; Xie, Huixian ; Zhang, Zuhao ; Guo, Junjie ; Pan, Feng ; Lin, Zhan</creator><creatorcontrib>Luo, Dong ; Cui, Jiaxiang ; Zhang, Bingkai ; Fan, Jianming ; Liu, Peizhi ; Ding, Xiaokai ; Xie, Huixian ; Zhang, Zuhao ; Guo, Junjie ; Pan, Feng ; Lin, Zhan</creatorcontrib><description>High‐energy‐density lithium‐rich layered oxides (LLOs) hold the greatest promise to address the range anxiety of electric vehicles. Their application, however, has been prevented by fast voltage decay and capacity fading for years, which mainly originate from irreversible transition‐metal migration and undesirable cathode‐electrolyte interfacial reactions. Herein, a Ti‐based surface integrated layer and bulk doping, which greatly improve the voltage and capacity stability of LLOs is synchronously constructed. More importantly, STEM and Raman results demonstrate that continuous and uniform surface Ti‐based integrated layer is a spinel‐like rocksalt structure with Fd‐3m space group, which is built through by several the replacement of Li ions in surface several atomic layers by Ti ions. After 500 cycles, Ti‐150 sample delivers a capacity retention of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle. Spectral results and DFT calculations suggest that bulk Ti‐doping mitigates the migration of Mn and Ni ions in the bulk, while Ti‐based integrated layer significantly suppresses surface structure evolution and interfacial reactions by impeding the generation of surface Li vacancies during Li extraction as well as preventing direct contact between electrolyte and active materials. Ti‐based surface integrated layer and bulk doping are synchronously constructed to mitigate the structural evolution and suppresses interfacial reactions of Li‐rich layered cathodes during long‐term cycling. After 500 cycles, Ti‐treated LLO sample delivers a capacity retention ratio of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202009310</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>capacity fading ; Cathodes ; Decay rate ; Doping ; Electric contacts ; Electric potential ; Electric vehicles ; Electrolytes ; Interface reactions ; interfacial reactions ; Lithium ; Li‐ion batteries ; Li‐rich layered cathodes ; Manganese ; Materials science ; Nickel ; structure evolution ; Surface structure ; Titanium ; Ti‐based integrated layer ; Voltage ; voltage decay</subject><ispartof>Advanced functional materials, 2021-04, Vol.31 (14), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-58b9b2fade8f0593a1f7e2a17fbc18693cba554bbf01ce1553e84d829352334b3</citedby><cites>FETCH-LOGICAL-c3540-58b9b2fade8f0593a1f7e2a17fbc18693cba554bbf01ce1553e84d829352334b3</cites><orcidid>0000-0001-5009-8198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202009310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202009310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Luo, Dong</creatorcontrib><creatorcontrib>Cui, Jiaxiang</creatorcontrib><creatorcontrib>Zhang, Bingkai</creatorcontrib><creatorcontrib>Fan, Jianming</creatorcontrib><creatorcontrib>Liu, Peizhi</creatorcontrib><creatorcontrib>Ding, Xiaokai</creatorcontrib><creatorcontrib>Xie, Huixian</creatorcontrib><creatorcontrib>Zhang, Zuhao</creatorcontrib><creatorcontrib>Guo, Junjie</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Lin, Zhan</creatorcontrib><title>Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes</title><title>Advanced functional materials</title><description>High‐energy‐density lithium‐rich layered oxides (LLOs) hold the greatest promise to address the range anxiety of electric vehicles. Their application, however, has been prevented by fast voltage decay and capacity fading for years, which mainly originate from irreversible transition‐metal migration and undesirable cathode‐electrolyte interfacial reactions. Herein, a Ti‐based surface integrated layer and bulk doping, which greatly improve the voltage and capacity stability of LLOs is synchronously constructed. More importantly, STEM and Raman results demonstrate that continuous and uniform surface Ti‐based integrated layer is a spinel‐like rocksalt structure with Fd‐3m space group, which is built through by several the replacement of Li ions in surface several atomic layers by Ti ions. After 500 cycles, Ti‐150 sample delivers a capacity retention of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle. Spectral results and DFT calculations suggest that bulk Ti‐doping mitigates the migration of Mn and Ni ions in the bulk, while Ti‐based integrated layer significantly suppresses surface structure evolution and interfacial reactions by impeding the generation of surface Li vacancies during Li extraction as well as preventing direct contact between electrolyte and active materials. Ti‐based surface integrated layer and bulk doping are synchronously constructed to mitigate the structural evolution and suppresses interfacial reactions of Li‐rich layered cathodes during long‐term cycling. After 500 cycles, Ti‐treated LLO sample delivers a capacity retention ratio of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle.</description><subject>capacity fading</subject><subject>Cathodes</subject><subject>Decay rate</subject><subject>Doping</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Electrolytes</subject><subject>Interface reactions</subject><subject>interfacial reactions</subject><subject>Lithium</subject><subject>Li‐ion batteries</subject><subject>Li‐rich layered cathodes</subject><subject>Manganese</subject><subject>Materials science</subject><subject>Nickel</subject><subject>structure evolution</subject><subject>Surface structure</subject><subject>Titanium</subject><subject>Ti‐based integrated layer</subject><subject>Voltage</subject><subject>voltage decay</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5WyJc4p_4iY-9odCpSAkWhA3y07sNiWti50I9cYj8Iw8CS5B5chpVrvfzEoDwCVGPYwQuZaFWfcIIghxitER6OA-7kcUkfT4MOOXU3Dm_QohnCQ07gA3L78-PofS6wLOGmdkruF0U-uFk3VYZXKnHZSbAg6b6hWO7bbcLKCxDs5qqSoNn21Vy4X-QTIbbllpNLQmaMh9LPNlmxGyRrJe2kL7c3BiZOX1xa92wdPkZj66i7KH2-lokEU5ZTGKWKq4IkYWOjWIcSqxSTSRODEqx2mf01xJxmKlDMK5xoxRncZFSjhlhNJY0S64anO3zr412tdiZRu3CS8FYYgTQnjMAtVrqdxZ7502YuvKtXQ7gZHY9yr2vYpDr8HAW8N7WendP7QYjCf3f95vNPh9Kw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Luo, Dong</creator><creator>Cui, Jiaxiang</creator><creator>Zhang, Bingkai</creator><creator>Fan, Jianming</creator><creator>Liu, Peizhi</creator><creator>Ding, Xiaokai</creator><creator>Xie, Huixian</creator><creator>Zhang, Zuhao</creator><creator>Guo, Junjie</creator><creator>Pan, Feng</creator><creator>Lin, Zhan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5009-8198</orcidid></search><sort><creationdate>20210401</creationdate><title>Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes</title><author>Luo, Dong ; Cui, Jiaxiang ; Zhang, Bingkai ; Fan, Jianming ; Liu, Peizhi ; Ding, Xiaokai ; Xie, Huixian ; Zhang, Zuhao ; Guo, Junjie ; Pan, Feng ; Lin, Zhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-58b9b2fade8f0593a1f7e2a17fbc18693cba554bbf01ce1553e84d829352334b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>capacity fading</topic><topic>Cathodes</topic><topic>Decay rate</topic><topic>Doping</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Electrolytes</topic><topic>Interface reactions</topic><topic>interfacial reactions</topic><topic>Lithium</topic><topic>Li‐ion batteries</topic><topic>Li‐rich layered cathodes</topic><topic>Manganese</topic><topic>Materials science</topic><topic>Nickel</topic><topic>structure evolution</topic><topic>Surface structure</topic><topic>Titanium</topic><topic>Ti‐based integrated layer</topic><topic>Voltage</topic><topic>voltage decay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Dong</creatorcontrib><creatorcontrib>Cui, Jiaxiang</creatorcontrib><creatorcontrib>Zhang, Bingkai</creatorcontrib><creatorcontrib>Fan, Jianming</creatorcontrib><creatorcontrib>Liu, Peizhi</creatorcontrib><creatorcontrib>Ding, Xiaokai</creatorcontrib><creatorcontrib>Xie, Huixian</creatorcontrib><creatorcontrib>Zhang, Zuhao</creatorcontrib><creatorcontrib>Guo, Junjie</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Lin, Zhan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Dong</au><au>Cui, Jiaxiang</au><au>Zhang, Bingkai</au><au>Fan, Jianming</au><au>Liu, Peizhi</au><au>Ding, Xiaokai</au><au>Xie, Huixian</au><au>Zhang, Zuhao</au><au>Guo, Junjie</au><au>Pan, Feng</au><au>Lin, Zhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes</atitle><jtitle>Advanced functional materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>High‐energy‐density lithium‐rich layered oxides (LLOs) hold the greatest promise to address the range anxiety of electric vehicles. Their application, however, has been prevented by fast voltage decay and capacity fading for years, which mainly originate from irreversible transition‐metal migration and undesirable cathode‐electrolyte interfacial reactions. Herein, a Ti‐based surface integrated layer and bulk doping, which greatly improve the voltage and capacity stability of LLOs is synchronously constructed. More importantly, STEM and Raman results demonstrate that continuous and uniform surface Ti‐based integrated layer is a spinel‐like rocksalt structure with Fd‐3m space group, which is built through by several the replacement of Li ions in surface several atomic layers by Ti ions. After 500 cycles, Ti‐150 sample delivers a capacity retention of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle. Spectral results and DFT calculations suggest that bulk Ti‐doping mitigates the migration of Mn and Ni ions in the bulk, while Ti‐based integrated layer significantly suppresses surface structure evolution and interfacial reactions by impeding the generation of surface Li vacancies during Li extraction as well as preventing direct contact between electrolyte and active materials. Ti‐based surface integrated layer and bulk doping are synchronously constructed to mitigate the structural evolution and suppresses interfacial reactions of Li‐rich layered cathodes during long‐term cycling. After 500 cycles, Ti‐treated LLO sample delivers a capacity retention ratio of 85%, and its voltage decay rate from the 30th to the 500th cycle is only ≈0.72 mV/cycle.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202009310</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5009-8198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-04, Vol.31 (14), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2509222945
source Access via Wiley Online Library
subjects capacity fading
Cathodes
Decay rate
Doping
Electric contacts
Electric potential
Electric vehicles
Electrolytes
Interface reactions
interfacial reactions
Lithium
Li‐ion batteries
Li‐rich layered cathodes
Manganese
Materials science
Nickel
structure evolution
Surface structure
Titanium
Ti‐based integrated layer
Voltage
voltage decay
title Ti‐Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Li‐Rich Layered Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ti%E2%80%90Based%20Surface%20Integrated%20Layer%20and%20Bulk%20Doping%20for%20Stable%20Voltage%20and%20Long%20Life%20of%20Li%E2%80%90Rich%20Layered%20Cathodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Dong&rft.date=2021-04-01&rft.volume=31&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202009310&rft_dat=%3Cproquest_cross%3E2509222945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509222945&rft_id=info:pmid/&rfr_iscdi=true