Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks

Summary Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate, depending on the parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication systems 2021-05, Vol.34 (7), p.n/a
Hauptverfasser: Leonardo, Elvio J., Mafra, Samuel B., Montejo‐Sánchez, Samuel, Fernández, Evelio M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title International journal of communication systems
container_volume 34
creator Leonardo, Elvio J.
Mafra, Samuel B.
Montejo‐Sánchez, Samuel
Fernández, Evelio M. G.
description Summary Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate, depending on the parameters of the involved α‐μ distributions. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network. Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network.
doi_str_mv 10.1002/dac.4756
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509213454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509213454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-ee54da3c82b08e0151ee29f7966e8bfb75e46b73f6890d99d97bb126526280af3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUg8QiWWBhIsZ3Yiceq_JUqscBsOYlNXdI42ElLNzZWXoWdZ-hD8CQ4LSvTne773ae7D4BTjEYYIXJZymKUpJTtgQFGnEcYx3i_79MkojHFh-DI-zlCKCOMDsDHuGmcfTML2Rpbe6itg-1MwTAsu6K9gK4XLqCsS-i7BbQabr5-3j8330GpS7uAS-mMzCvl4cq0MyibpjLF1g2aeusla1mtvfH9cmGfa9OapQrrpbGwVu3Kuhd_DA60rLw6-atD8HRz_Ti5i6YPt_eT8TQqCI9ZpBRNShkXGclRphCmWCnCdcoZU1mu85SqhOVprFnGUcl5ydM8x-FTwkiGpI6H4GznGx587ZRvxdx2LhzoBaGIExwnNAnU-Y4qnPXeKS0aFyJya4GR6GMWIWbRxxzQaIeuTKXW_3LiajzZ8r8u24Ic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509213454</pqid></control><display><type>article</type><title>Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks</title><source>Access via Wiley Online Library</source><creator>Leonardo, Elvio J. ; Mafra, Samuel B. ; Montejo‐Sánchez, Samuel ; Fernández, Evelio M. G.</creator><creatorcontrib>Leonardo, Elvio J. ; Mafra, Samuel B. ; Montejo‐Sánchez, Samuel ; Fernández, Evelio M. G.</creatorcontrib><description>Summary Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate, depending on the parameters of the involved α‐μ distributions. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network. Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network.</description><identifier>ISSN: 1074-5351</identifier><identifier>EISSN: 1099-1131</identifier><identifier>DOI: 10.1002/dac.4756</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Cognitive radio ; Energy harvesting ; Probability density functions ; product of random variables ; Random variables ; ratio of random variables ; sum of random variables ; α‐μ distribution</subject><ispartof>International journal of communication systems, 2021-05, Vol.34 (7), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-ee54da3c82b08e0151ee29f7966e8bfb75e46b73f6890d99d97bb126526280af3</citedby><cites>FETCH-LOGICAL-c2936-ee54da3c82b08e0151ee29f7966e8bfb75e46b73f6890d99d97bb126526280af3</cites><orcidid>0000-0001-7958-7569 ; 0000-0002-5238-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdac.4756$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdac.4756$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Leonardo, Elvio J.</creatorcontrib><creatorcontrib>Mafra, Samuel B.</creatorcontrib><creatorcontrib>Montejo‐Sánchez, Samuel</creatorcontrib><creatorcontrib>Fernández, Evelio M. G.</creatorcontrib><title>Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks</title><title>International journal of communication systems</title><description>Summary Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate, depending on the parameters of the involved α‐μ distributions. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network. Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network.</description><subject>Approximation</subject><subject>Cognitive radio</subject><subject>Energy harvesting</subject><subject>Probability density functions</subject><subject>product of random variables</subject><subject>Random variables</subject><subject>ratio of random variables</subject><subject>sum of random variables</subject><subject>α‐μ distribution</subject><issn>1074-5351</issn><issn>1099-1131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUg8QiWWBhIsZ3Yiceq_JUqscBsOYlNXdI42ElLNzZWXoWdZ-hD8CQ4LSvTne773ae7D4BTjEYYIXJZymKUpJTtgQFGnEcYx3i_79MkojHFh-DI-zlCKCOMDsDHuGmcfTML2Rpbe6itg-1MwTAsu6K9gK4XLqCsS-i7BbQabr5-3j8330GpS7uAS-mMzCvl4cq0MyibpjLF1g2aeusla1mtvfH9cmGfa9OapQrrpbGwVu3Kuhd_DA60rLw6-atD8HRz_Ti5i6YPt_eT8TQqCI9ZpBRNShkXGclRphCmWCnCdcoZU1mu85SqhOVprFnGUcl5ydM8x-FTwkiGpI6H4GznGx587ZRvxdx2LhzoBaGIExwnNAnU-Y4qnPXeKS0aFyJya4GR6GMWIWbRxxzQaIeuTKXW_3LiajzZ8r8u24Ic</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Leonardo, Elvio J.</creator><creator>Mafra, Samuel B.</creator><creator>Montejo‐Sánchez, Samuel</creator><creator>Fernández, Evelio M. G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7958-7569</orcidid><orcidid>https://orcid.org/0000-0002-5238-1795</orcidid></search><sort><creationdate>20210510</creationdate><title>Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks</title><author>Leonardo, Elvio J. ; Mafra, Samuel B. ; Montejo‐Sánchez, Samuel ; Fernández, Evelio M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-ee54da3c82b08e0151ee29f7966e8bfb75e46b73f6890d99d97bb126526280af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Cognitive radio</topic><topic>Energy harvesting</topic><topic>Probability density functions</topic><topic>product of random variables</topic><topic>Random variables</topic><topic>ratio of random variables</topic><topic>sum of random variables</topic><topic>α‐μ distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonardo, Elvio J.</creatorcontrib><creatorcontrib>Mafra, Samuel B.</creatorcontrib><creatorcontrib>Montejo‐Sánchez, Samuel</creatorcontrib><creatorcontrib>Fernández, Evelio M. G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of communication systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonardo, Elvio J.</au><au>Mafra, Samuel B.</au><au>Montejo‐Sánchez, Samuel</au><au>Fernández, Evelio M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks</atitle><jtitle>International journal of communication systems</jtitle><date>2021-05-10</date><risdate>2021</risdate><volume>34</volume><issue>7</issue><epage>n/a</epage><issn>1074-5351</issn><eissn>1099-1131</eissn><abstract>Summary Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate, depending on the parameters of the involved α‐μ distributions. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network. Novel methods to approximate the probability density function of the product, ratio, and sum of α‐μ random variables are presented in this article. The approximations are simple to compute and produce results that range from fairly accurate to perfectly accurate. In addition, as an application of the results, it is investigated the performance of a cooperative cognitive network in which the secondary source and the relays are energy‐constrained nodes and harvest their energy from the primary network.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/dac.4756</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7958-7569</orcidid><orcidid>https://orcid.org/0000-0002-5238-1795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1074-5351
ispartof International journal of communication systems, 2021-05, Vol.34 (7), p.n/a
issn 1074-5351
1099-1131
language eng
recordid cdi_proquest_journals_2509213454
source Access via Wiley Online Library
subjects Approximation
Cognitive radio
Energy harvesting
Probability density functions
product of random variables
Random variables
ratio of random variables
sum of random variables
α‐μ distribution
title Approximations for the product, ratio, and sum of α‐μ random variables with application in the analysis of cognitive radio networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20for%20the%20product,%20ratio,%20and%20sum%20of%20%CE%B1%E2%80%90%CE%BC%20random%20variables%20with%20application%20in%20the%20analysis%20of%20cognitive%20radio%20networks&rft.jtitle=International%20journal%20of%20communication%20systems&rft.au=Leonardo,%20Elvio%20J.&rft.date=2021-05-10&rft.volume=34&rft.issue=7&rft.epage=n/a&rft.issn=1074-5351&rft.eissn=1099-1131&rft_id=info:doi/10.1002/dac.4756&rft_dat=%3Cproquest_cross%3E2509213454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509213454&rft_id=info:pmid/&rfr_iscdi=true