Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material
Traditional electrochromic devices change the color of electrochromic materials by mainly transforming the absorption band of the materials electrically, which leads to low schedulable color selection and color performance of such materials after electrochromism. Although the addition of an interfer...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2021-04, Vol.9 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Jiang, Shun‐An Chang, Jia‐Lun Lin, Jyun‐Wei Zhang, Yan‐Song Mo, Ting‐Shan Lin, Jia‐De Lee, Chia‐Rong |
description | Traditional electrochromic devices change the color of electrochromic materials by mainly transforming the absorption band of the materials electrically, which leads to low schedulable color selection and color performance of such materials after electrochromism. Although the addition of an interference‐enhanced nanocavity can improve this issue, achieving full‐color controllability on a single electrochromic device is still a huge challenge. This study first demonstrates a near‐full‐color tunable chiroptical electrothermochromic device using a supramolecular chiral photonic material called ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC) (FLC‐CLC). Experimental results show that the pitch of the CLC can be elongated significantly by doping a low concentration of FLC (≈4 wt%) such that the photonic bandgap (PBG) redshifts from blue to the shortwave near‐infrared region at near room temperature. Based on this fascinating feature, the PBG of the FLC‐CLC can be tuned electrically over the entire visible region with high color performance at near room temperature in a low‐voltage range (≤3 V) via the efficient electrothermal effect of the indium‐tin‐oxide‐coated substrate of the sample. Two potential low‐voltage tunable applications based on electrothermochromic FLC‐CLC materials, namely, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are demonstrated in the study.
This study develops a near‐room‐temperature‐usable and near‐full‐color low‐voltage tunable chiroptical electrothermochromic device based on a novel material of ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC). Two potential low‐voltage tunable applications, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are also demonstrated based on the FLC‐CLC material. |
doi_str_mv | 10.1002/adom.202001796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509212148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509212148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3836-bbd7f2bda84c66bb7cd82ed463b52e9f2c9a438b9215779991964011e5df087d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEhV0ZbbEnGI7P47HkraA1KpIlNlybEdJ5cTBSai68Qg8I0-CSxGwMd0zfN-50gHgCqMJRojcCGXrCUEEIUxZcgJGBLM4wIji0z_5HIy7bos8hGjIIjoCu43dCafgYjDm4-09s8Y6uBkakRsNs7Jytu0rKQycGy17Z_tSu9rK0tm6knCmXyupO3grOq2gbaCAT0PrRG09PRjhviq8_Vja3jbeWIleu0qYS3BWCNPp8fe9AM-L-Sa7D5bru4dsugxkmIZJkOeKFiRXIo1kkuQ5lSolWkVJmMdEs4JIJqIwzRnBMaWMMcySCGGsY1WglKrwAlwfe1tnXwbd9XxrB9f4l5zEyGsER6mnJkdKOtt1The8dVUt3J5jxA_78sO-_GdfL7CjsKuM3v9D8-lsvfp1PwHqG4En</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509212148</pqid></control><display><type>article</type><title>Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material</title><source>Wiley Journals</source><creator>Jiang, Shun‐An ; Chang, Jia‐Lun ; Lin, Jyun‐Wei ; Zhang, Yan‐Song ; Mo, Ting‐Shan ; Lin, Jia‐De ; Lee, Chia‐Rong</creator><creatorcontrib>Jiang, Shun‐An ; Chang, Jia‐Lun ; Lin, Jyun‐Wei ; Zhang, Yan‐Song ; Mo, Ting‐Shan ; Lin, Jia‐De ; Lee, Chia‐Rong</creatorcontrib><description>Traditional electrochromic devices change the color of electrochromic materials by mainly transforming the absorption band of the materials electrically, which leads to low schedulable color selection and color performance of such materials after electrochromism. Although the addition of an interference‐enhanced nanocavity can improve this issue, achieving full‐color controllability on a single electrochromic device is still a huge challenge. This study first demonstrates a near‐full‐color tunable chiroptical electrothermochromic device using a supramolecular chiral photonic material called ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC) (FLC‐CLC). Experimental results show that the pitch of the CLC can be elongated significantly by doping a low concentration of FLC (≈4 wt%) such that the photonic bandgap (PBG) redshifts from blue to the shortwave near‐infrared region at near room temperature. Based on this fascinating feature, the PBG of the FLC‐CLC can be tuned electrically over the entire visible region with high color performance at near room temperature in a low‐voltage range (≤3 V) via the efficient electrothermal effect of the indium‐tin‐oxide‐coated substrate of the sample. Two potential low‐voltage tunable applications based on electrothermochromic FLC‐CLC materials, namely, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are demonstrated in the study.
This study develops a near‐room‐temperature‐usable and near‐full‐color low‐voltage tunable chiroptical electrothermochromic device based on a novel material of ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC). Two potential low‐voltage tunable applications, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are also demonstrated based on the FLC‐CLC material.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001796</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Broadband ; Cholesteric liquid crystals ; Controllability ; Electric potential ; Electrochromic cells ; electrochromic devices ; Electrochromism ; electrospun fibers ; ferroelectric liquid crystals ; Ferroelectricity ; liquid crystal lasers ; Materials science ; Optics ; Photonic band gaps ; Photonic crystals ; Room temperature ; Short wave radiation ; Substrates ; Tunable lasers ; Voltage</subject><ispartof>Advanced optical materials, 2021-04, Vol.9 (7), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3836-bbd7f2bda84c66bb7cd82ed463b52e9f2c9a438b9215779991964011e5df087d3</citedby><cites>FETCH-LOGICAL-c3836-bbd7f2bda84c66bb7cd82ed463b52e9f2c9a438b9215779991964011e5df087d3</cites><orcidid>0000-0002-7917-7583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001796$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001796$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Shun‐An</creatorcontrib><creatorcontrib>Chang, Jia‐Lun</creatorcontrib><creatorcontrib>Lin, Jyun‐Wei</creatorcontrib><creatorcontrib>Zhang, Yan‐Song</creatorcontrib><creatorcontrib>Mo, Ting‐Shan</creatorcontrib><creatorcontrib>Lin, Jia‐De</creatorcontrib><creatorcontrib>Lee, Chia‐Rong</creatorcontrib><title>Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material</title><title>Advanced optical materials</title><description>Traditional electrochromic devices change the color of electrochromic materials by mainly transforming the absorption band of the materials electrically, which leads to low schedulable color selection and color performance of such materials after electrochromism. Although the addition of an interference‐enhanced nanocavity can improve this issue, achieving full‐color controllability on a single electrochromic device is still a huge challenge. This study first demonstrates a near‐full‐color tunable chiroptical electrothermochromic device using a supramolecular chiral photonic material called ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC) (FLC‐CLC). Experimental results show that the pitch of the CLC can be elongated significantly by doping a low concentration of FLC (≈4 wt%) such that the photonic bandgap (PBG) redshifts from blue to the shortwave near‐infrared region at near room temperature. Based on this fascinating feature, the PBG of the FLC‐CLC can be tuned electrically over the entire visible region with high color performance at near room temperature in a low‐voltage range (≤3 V) via the efficient electrothermal effect of the indium‐tin‐oxide‐coated substrate of the sample. Two potential low‐voltage tunable applications based on electrothermochromic FLC‐CLC materials, namely, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are demonstrated in the study.
This study develops a near‐room‐temperature‐usable and near‐full‐color low‐voltage tunable chiroptical electrothermochromic device based on a novel material of ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC). Two potential low‐voltage tunable applications, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are also demonstrated based on the FLC‐CLC material.</description><subject>Absorption spectra</subject><subject>Broadband</subject><subject>Cholesteric liquid crystals</subject><subject>Controllability</subject><subject>Electric potential</subject><subject>Electrochromic cells</subject><subject>electrochromic devices</subject><subject>Electrochromism</subject><subject>electrospun fibers</subject><subject>ferroelectric liquid crystals</subject><subject>Ferroelectricity</subject><subject>liquid crystal lasers</subject><subject>Materials science</subject><subject>Optics</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Room temperature</subject><subject>Short wave radiation</subject><subject>Substrates</subject><subject>Tunable lasers</subject><subject>Voltage</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEhV0ZbbEnGI7P47HkraA1KpIlNlybEdJ5cTBSai68Qg8I0-CSxGwMd0zfN-50gHgCqMJRojcCGXrCUEEIUxZcgJGBLM4wIji0z_5HIy7bos8hGjIIjoCu43dCafgYjDm4-09s8Y6uBkakRsNs7Jytu0rKQycGy17Z_tSu9rK0tm6knCmXyupO3grOq2gbaCAT0PrRG09PRjhviq8_Vja3jbeWIleu0qYS3BWCNPp8fe9AM-L-Sa7D5bru4dsugxkmIZJkOeKFiRXIo1kkuQ5lSolWkVJmMdEs4JIJqIwzRnBMaWMMcySCGGsY1WglKrwAlwfe1tnXwbd9XxrB9f4l5zEyGsER6mnJkdKOtt1The8dVUt3J5jxA_78sO-_GdfL7CjsKuM3v9D8-lsvfp1PwHqG4En</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Jiang, Shun‐An</creator><creator>Chang, Jia‐Lun</creator><creator>Lin, Jyun‐Wei</creator><creator>Zhang, Yan‐Song</creator><creator>Mo, Ting‐Shan</creator><creator>Lin, Jia‐De</creator><creator>Lee, Chia‐Rong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7917-7583</orcidid></search><sort><creationdate>20210401</creationdate><title>Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material</title><author>Jiang, Shun‐An ; Chang, Jia‐Lun ; Lin, Jyun‐Wei ; Zhang, Yan‐Song ; Mo, Ting‐Shan ; Lin, Jia‐De ; Lee, Chia‐Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3836-bbd7f2bda84c66bb7cd82ed463b52e9f2c9a438b9215779991964011e5df087d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Broadband</topic><topic>Cholesteric liquid crystals</topic><topic>Controllability</topic><topic>Electric potential</topic><topic>Electrochromic cells</topic><topic>electrochromic devices</topic><topic>Electrochromism</topic><topic>electrospun fibers</topic><topic>ferroelectric liquid crystals</topic><topic>Ferroelectricity</topic><topic>liquid crystal lasers</topic><topic>Materials science</topic><topic>Optics</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Room temperature</topic><topic>Short wave radiation</topic><topic>Substrates</topic><topic>Tunable lasers</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shun‐An</creatorcontrib><creatorcontrib>Chang, Jia‐Lun</creatorcontrib><creatorcontrib>Lin, Jyun‐Wei</creatorcontrib><creatorcontrib>Zhang, Yan‐Song</creatorcontrib><creatorcontrib>Mo, Ting‐Shan</creatorcontrib><creatorcontrib>Lin, Jia‐De</creatorcontrib><creatorcontrib>Lee, Chia‐Rong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shun‐An</au><au>Chang, Jia‐Lun</au><au>Lin, Jyun‐Wei</au><au>Zhang, Yan‐Song</au><au>Mo, Ting‐Shan</au><au>Lin, Jia‐De</au><au>Lee, Chia‐Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material</atitle><jtitle>Advanced optical materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Traditional electrochromic devices change the color of electrochromic materials by mainly transforming the absorption band of the materials electrically, which leads to low schedulable color selection and color performance of such materials after electrochromism. Although the addition of an interference‐enhanced nanocavity can improve this issue, achieving full‐color controllability on a single electrochromic device is still a huge challenge. This study first demonstrates a near‐full‐color tunable chiroptical electrothermochromic device using a supramolecular chiral photonic material called ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC) (FLC‐CLC). Experimental results show that the pitch of the CLC can be elongated significantly by doping a low concentration of FLC (≈4 wt%) such that the photonic bandgap (PBG) redshifts from blue to the shortwave near‐infrared region at near room temperature. Based on this fascinating feature, the PBG of the FLC‐CLC can be tuned electrically over the entire visible region with high color performance at near room temperature in a low‐voltage range (≤3 V) via the efficient electrothermal effect of the indium‐tin‐oxide‐coated substrate of the sample. Two potential low‐voltage tunable applications based on electrothermochromic FLC‐CLC materials, namely, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are demonstrated in the study.
This study develops a near‐room‐temperature‐usable and near‐full‐color low‐voltage tunable chiroptical electrothermochromic device based on a novel material of ferroelectric liquid crystal (FLC)‐doped cholesteric liquid crystal (CLC). Two potential low‐voltage tunable applications, a broadband tunable laser and a near‐full‐color tunable coaxial microfibric textile, are also demonstrated based on the FLC‐CLC material.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001796</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7917-7583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-04, Vol.9 (7), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2509212148 |
source | Wiley Journals |
subjects | Absorption spectra Broadband Cholesteric liquid crystals Controllability Electric potential Electrochromic cells electrochromic devices Electrochromism electrospun fibers ferroelectric liquid crystals Ferroelectricity liquid crystal lasers Materials science Optics Photonic band gaps Photonic crystals Room temperature Short wave radiation Substrates Tunable lasers Voltage |
title | Toward Full‐Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Full%E2%80%90Color%20Tunable%20Chiroptical%20Electrothermochromic%20Devices%20Based%20on%20a%20Supramolecular%20Chiral%20Photonic%20Material&rft.jtitle=Advanced%20optical%20materials&rft.au=Jiang,%20Shun%E2%80%90An&rft.date=2021-04-01&rft.volume=9&rft.issue=7&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001796&rft_dat=%3Cproquest_cross%3E2509212148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509212148&rft_id=info:pmid/&rfr_iscdi=true |