Improved estimation of gut passage time considerably affects trait‐based dispersal models

Animals are important vectors for transporting seeds, nutrients and microbes across landscapes. However, models that quantify the magnitude of these ecosystem services across a broad range of taxa often rely on generalised mass‐based scaling parameters for gut passage time. This relationship is weak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional ecology 2021-04, Vol.35 (4), p.860-869
Hauptverfasser: Abraham, Andrew J., Prys‐Jones, Tomos O., De Cuyper, Annelies, Ridenour, Chase, Hempson, Gareth P., Hocking, Toby, Clauss, Marcus, Doughty, Christopher E., Schleuning, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 4
container_start_page 860
container_title Functional ecology
container_volume 35
creator Abraham, Andrew J.
Prys‐Jones, Tomos O.
De Cuyper, Annelies
Ridenour, Chase
Hempson, Gareth P.
Hocking, Toby
Clauss, Marcus
Doughty, Christopher E.
Schleuning, Matthias
description Animals are important vectors for transporting seeds, nutrients and microbes across landscapes. However, models that quantify the magnitude of these ecosystem services across a broad range of taxa often rely on generalised mass‐based scaling parameters for gut passage time. This relationship is weak and fundamentally breaks down when considering individual species, indicating that current models may incorrectly attribute or estimate the magnitude of dispersal. We collated a large dataset of gut passage time for endothermic animals measured using undigested markers (n = 391 species). For each species, we compiled trait data, including body mass, morphology, gut physiology, diet and phylogeny. We then compared the ability of five statistical models (constant, generalised least squares, phylogenetic generalised least squares, general linear model and random forest) to estimate the time of first marker appearance (transit time; TT) and mean marker retention time (MRT) for particle and solute markers in mammals and birds separately. For mammals, we found that the inclusion of additional traits appreciably reduced the median root‐mean squared error across all markers in a leave‐one‐out cross validation. For birds, however, additional traits did not significantly improve our ability to predict gut passage time across markers. This may have occurred due to the smaller number of bird species included in our analysis or the absence of important explanatory factors such as differences in gastrointestinal morphology. Using the MRTparticle random forest model from this study, we updated two trait‐based dispersal models for seed and nutrient movement by mammals. The magnitude of dispersal in our updated predictions ranged from 66% to 176% of the original model formulation for different scenarios, highlighting the importance of gut passage time for dispersal models. Furthermore, the contribution by individual or groups of species was found sizeably altered in our updated models. Future modelling studies of dispersal by mammals, for which empirical estimates of gut passage time are absent, will benefit from predicting gut passage time using statistical models that incorporate traits including animal morphology, diet and gut physiology. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
doi_str_mv 10.1111/1365-2435.13726
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509211815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509211815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3156-cd1212c13c5444f2ba34c9643dae86bddc3ff533ac7822cfc1cc85e4ec5e54cc3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFbPXhc8x-7fNDlKabVQ8KInD8tmdrakpE3cTZXe_Ah-Rj-JWyNencvA8N4b3o-Qa85ueZoJl7nOhJL6lsupyE_I6O9ySkZM5GVWqFyek4sYN4yxUgsxIi_LbRfaN3QUY19vbV-3O9p6ut73tLMx2jXSdEcK7S7WDoOtmgO13iP0kfbB1v3Xx2dlY0pwdewwRNvQbeuwiZfkzNsm4tXvHpPnxfxp9pCtHu-Xs7tVBpLrPAPHBRfAJWillBeVlQrKXElnscgr50B6r6W0MC2EAA8coNCoEDRqBSDH5GbITU1e96mH2bT7sEsvjdCsFJwXXCfVZFBBaGMM6E0XUuFwMJyZI0Fz5GWOvMwPweTQg-O9bvDwn9ws5rPB9w1V5XUj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509211815</pqid></control><display><type>article</type><title>Improved estimation of gut passage time considerably affects trait‐based dispersal models</title><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Abraham, Andrew J. ; Prys‐Jones, Tomos O. ; De Cuyper, Annelies ; Ridenour, Chase ; Hempson, Gareth P. ; Hocking, Toby ; Clauss, Marcus ; Doughty, Christopher E. ; Schleuning, Matthias</creator><contributor>Schleuning, Matthias</contributor><creatorcontrib>Abraham, Andrew J. ; Prys‐Jones, Tomos O. ; De Cuyper, Annelies ; Ridenour, Chase ; Hempson, Gareth P. ; Hocking, Toby ; Clauss, Marcus ; Doughty, Christopher E. ; Schleuning, Matthias ; Schleuning, Matthias</creatorcontrib><description>Animals are important vectors for transporting seeds, nutrients and microbes across landscapes. However, models that quantify the magnitude of these ecosystem services across a broad range of taxa often rely on generalised mass‐based scaling parameters for gut passage time. This relationship is weak and fundamentally breaks down when considering individual species, indicating that current models may incorrectly attribute or estimate the magnitude of dispersal. We collated a large dataset of gut passage time for endothermic animals measured using undigested markers (n = 391 species). For each species, we compiled trait data, including body mass, morphology, gut physiology, diet and phylogeny. We then compared the ability of five statistical models (constant, generalised least squares, phylogenetic generalised least squares, general linear model and random forest) to estimate the time of first marker appearance (transit time; TT) and mean marker retention time (MRT) for particle and solute markers in mammals and birds separately. For mammals, we found that the inclusion of additional traits appreciably reduced the median root‐mean squared error across all markers in a leave‐one‐out cross validation. For birds, however, additional traits did not significantly improve our ability to predict gut passage time across markers. This may have occurred due to the smaller number of bird species included in our analysis or the absence of important explanatory factors such as differences in gastrointestinal morphology. Using the MRTparticle random forest model from this study, we updated two trait‐based dispersal models for seed and nutrient movement by mammals. The magnitude of dispersal in our updated predictions ranged from 66% to 176% of the original model formulation for different scenarios, highlighting the importance of gut passage time for dispersal models. Furthermore, the contribution by individual or groups of species was found sizeably altered in our updated models. Future modelling studies of dispersal by mammals, for which empirical estimates of gut passage time are absent, will benefit from predicting gut passage time using statistical models that incorporate traits including animal morphology, diet and gut physiology. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.13726</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>allometry ; Animal morphology ; Animals ; Birds ; Body mass ; Diet ; diffusion capacity ; Digestive system ; Dispersal ; ecosystem service ; Ecosystem services ; Empirical analysis ; functional traits ; Gastrointestinal tract ; Least squares ; Mammals ; Markers ; Mathematical models ; Mean ; Morphology ; Nutrients ; passage time ; Phylogeny ; Physiology ; Retention time ; Seed dispersal ; Species ; Statistical analysis ; Statistical models ; Transit time</subject><ispartof>Functional ecology, 2021-04, Vol.35 (4), p.860-869</ispartof><rights>2020 British Ecological Society</rights><rights>2021 British Ecological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3156-cd1212c13c5444f2ba34c9643dae86bddc3ff533ac7822cfc1cc85e4ec5e54cc3</citedby><cites>FETCH-LOGICAL-c3156-cd1212c13c5444f2ba34c9643dae86bddc3ff533ac7822cfc1cc85e4ec5e54cc3</cites><orcidid>0000-0001-8625-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.13726$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.13726$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><contributor>Schleuning, Matthias</contributor><creatorcontrib>Abraham, Andrew J.</creatorcontrib><creatorcontrib>Prys‐Jones, Tomos O.</creatorcontrib><creatorcontrib>De Cuyper, Annelies</creatorcontrib><creatorcontrib>Ridenour, Chase</creatorcontrib><creatorcontrib>Hempson, Gareth P.</creatorcontrib><creatorcontrib>Hocking, Toby</creatorcontrib><creatorcontrib>Clauss, Marcus</creatorcontrib><creatorcontrib>Doughty, Christopher E.</creatorcontrib><creatorcontrib>Schleuning, Matthias</creatorcontrib><title>Improved estimation of gut passage time considerably affects trait‐based dispersal models</title><title>Functional ecology</title><description>Animals are important vectors for transporting seeds, nutrients and microbes across landscapes. However, models that quantify the magnitude of these ecosystem services across a broad range of taxa often rely on generalised mass‐based scaling parameters for gut passage time. This relationship is weak and fundamentally breaks down when considering individual species, indicating that current models may incorrectly attribute or estimate the magnitude of dispersal. We collated a large dataset of gut passage time for endothermic animals measured using undigested markers (n = 391 species). For each species, we compiled trait data, including body mass, morphology, gut physiology, diet and phylogeny. We then compared the ability of five statistical models (constant, generalised least squares, phylogenetic generalised least squares, general linear model and random forest) to estimate the time of first marker appearance (transit time; TT) and mean marker retention time (MRT) for particle and solute markers in mammals and birds separately. For mammals, we found that the inclusion of additional traits appreciably reduced the median root‐mean squared error across all markers in a leave‐one‐out cross validation. For birds, however, additional traits did not significantly improve our ability to predict gut passage time across markers. This may have occurred due to the smaller number of bird species included in our analysis or the absence of important explanatory factors such as differences in gastrointestinal morphology. Using the MRTparticle random forest model from this study, we updated two trait‐based dispersal models for seed and nutrient movement by mammals. The magnitude of dispersal in our updated predictions ranged from 66% to 176% of the original model formulation for different scenarios, highlighting the importance of gut passage time for dispersal models. Furthermore, the contribution by individual or groups of species was found sizeably altered in our updated models. Future modelling studies of dispersal by mammals, for which empirical estimates of gut passage time are absent, will benefit from predicting gut passage time using statistical models that incorporate traits including animal morphology, diet and gut physiology. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.</description><subject>allometry</subject><subject>Animal morphology</subject><subject>Animals</subject><subject>Birds</subject><subject>Body mass</subject><subject>Diet</subject><subject>diffusion capacity</subject><subject>Digestive system</subject><subject>Dispersal</subject><subject>ecosystem service</subject><subject>Ecosystem services</subject><subject>Empirical analysis</subject><subject>functional traits</subject><subject>Gastrointestinal tract</subject><subject>Least squares</subject><subject>Mammals</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>Mean</subject><subject>Morphology</subject><subject>Nutrients</subject><subject>passage time</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Retention time</subject><subject>Seed dispersal</subject><subject>Species</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Transit time</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFbPXhc8x-7fNDlKabVQ8KInD8tmdrakpE3cTZXe_Ah-Rj-JWyNencvA8N4b3o-Qa85ueZoJl7nOhJL6lsupyE_I6O9ySkZM5GVWqFyek4sYN4yxUgsxIi_LbRfaN3QUY19vbV-3O9p6ut73tLMx2jXSdEcK7S7WDoOtmgO13iP0kfbB1v3Xx2dlY0pwdewwRNvQbeuwiZfkzNsm4tXvHpPnxfxp9pCtHu-Xs7tVBpLrPAPHBRfAJWillBeVlQrKXElnscgr50B6r6W0MC2EAA8coNCoEDRqBSDH5GbITU1e96mH2bT7sEsvjdCsFJwXXCfVZFBBaGMM6E0XUuFwMJyZI0Fz5GWOvMwPweTQg-O9bvDwn9ws5rPB9w1V5XUj</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Abraham, Andrew J.</creator><creator>Prys‐Jones, Tomos O.</creator><creator>De Cuyper, Annelies</creator><creator>Ridenour, Chase</creator><creator>Hempson, Gareth P.</creator><creator>Hocking, Toby</creator><creator>Clauss, Marcus</creator><creator>Doughty, Christopher E.</creator><creator>Schleuning, Matthias</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8625-8851</orcidid></search><sort><creationdate>202104</creationdate><title>Improved estimation of gut passage time considerably affects trait‐based dispersal models</title><author>Abraham, Andrew J. ; Prys‐Jones, Tomos O. ; De Cuyper, Annelies ; Ridenour, Chase ; Hempson, Gareth P. ; Hocking, Toby ; Clauss, Marcus ; Doughty, Christopher E. ; Schleuning, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3156-cd1212c13c5444f2ba34c9643dae86bddc3ff533ac7822cfc1cc85e4ec5e54cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>allometry</topic><topic>Animal morphology</topic><topic>Animals</topic><topic>Birds</topic><topic>Body mass</topic><topic>Diet</topic><topic>diffusion capacity</topic><topic>Digestive system</topic><topic>Dispersal</topic><topic>ecosystem service</topic><topic>Ecosystem services</topic><topic>Empirical analysis</topic><topic>functional traits</topic><topic>Gastrointestinal tract</topic><topic>Least squares</topic><topic>Mammals</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>Mean</topic><topic>Morphology</topic><topic>Nutrients</topic><topic>passage time</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Retention time</topic><topic>Seed dispersal</topic><topic>Species</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Transit time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Andrew J.</creatorcontrib><creatorcontrib>Prys‐Jones, Tomos O.</creatorcontrib><creatorcontrib>De Cuyper, Annelies</creatorcontrib><creatorcontrib>Ridenour, Chase</creatorcontrib><creatorcontrib>Hempson, Gareth P.</creatorcontrib><creatorcontrib>Hocking, Toby</creatorcontrib><creatorcontrib>Clauss, Marcus</creatorcontrib><creatorcontrib>Doughty, Christopher E.</creatorcontrib><creatorcontrib>Schleuning, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Andrew J.</au><au>Prys‐Jones, Tomos O.</au><au>De Cuyper, Annelies</au><au>Ridenour, Chase</au><au>Hempson, Gareth P.</au><au>Hocking, Toby</au><au>Clauss, Marcus</au><au>Doughty, Christopher E.</au><au>Schleuning, Matthias</au><au>Schleuning, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved estimation of gut passage time considerably affects trait‐based dispersal models</atitle><jtitle>Functional ecology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>860</spage><epage>869</epage><pages>860-869</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Animals are important vectors for transporting seeds, nutrients and microbes across landscapes. However, models that quantify the magnitude of these ecosystem services across a broad range of taxa often rely on generalised mass‐based scaling parameters for gut passage time. This relationship is weak and fundamentally breaks down when considering individual species, indicating that current models may incorrectly attribute or estimate the magnitude of dispersal. We collated a large dataset of gut passage time for endothermic animals measured using undigested markers (n = 391 species). For each species, we compiled trait data, including body mass, morphology, gut physiology, diet and phylogeny. We then compared the ability of five statistical models (constant, generalised least squares, phylogenetic generalised least squares, general linear model and random forest) to estimate the time of first marker appearance (transit time; TT) and mean marker retention time (MRT) for particle and solute markers in mammals and birds separately. For mammals, we found that the inclusion of additional traits appreciably reduced the median root‐mean squared error across all markers in a leave‐one‐out cross validation. For birds, however, additional traits did not significantly improve our ability to predict gut passage time across markers. This may have occurred due to the smaller number of bird species included in our analysis or the absence of important explanatory factors such as differences in gastrointestinal morphology. Using the MRTparticle random forest model from this study, we updated two trait‐based dispersal models for seed and nutrient movement by mammals. The magnitude of dispersal in our updated predictions ranged from 66% to 176% of the original model formulation for different scenarios, highlighting the importance of gut passage time for dispersal models. Furthermore, the contribution by individual or groups of species was found sizeably altered in our updated models. Future modelling studies of dispersal by mammals, for which empirical estimates of gut passage time are absent, will benefit from predicting gut passage time using statistical models that incorporate traits including animal morphology, diet and gut physiology. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.13726</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8625-8851</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2021-04, Vol.35 (4), p.860-869
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_journals_2509211815
source Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects allometry
Animal morphology
Animals
Birds
Body mass
Diet
diffusion capacity
Digestive system
Dispersal
ecosystem service
Ecosystem services
Empirical analysis
functional traits
Gastrointestinal tract
Least squares
Mammals
Markers
Mathematical models
Mean
Morphology
Nutrients
passage time
Phylogeny
Physiology
Retention time
Seed dispersal
Species
Statistical analysis
Statistical models
Transit time
title Improved estimation of gut passage time considerably affects trait‐based dispersal models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20estimation%20of%20gut%20passage%20time%20considerably%20affects%20trait%E2%80%90based%20dispersal%20models&rft.jtitle=Functional%20ecology&rft.au=Abraham,%20Andrew%20J.&rft.date=2021-04&rft.volume=35&rft.issue=4&rft.spage=860&rft.epage=869&rft.pages=860-869&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.13726&rft_dat=%3Cproquest_cross%3E2509211815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509211815&rft_id=info:pmid/&rfr_iscdi=true