Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields
In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with...
Gespeichert in:
Veröffentlicht in: | Robotica 2021-05, Vol.39 (5), p.842-861 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 861 |
---|---|
container_issue | 5 |
container_start_page | 842 |
container_title | Robotica |
container_volume | 39 |
creator | Wu, Wencen You, Jie Zhang, Yufei Li, Mingchen Su, Kun |
description | In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our laboratory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms. |
doi_str_mv | 10.1017/S0263574720000788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509172180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574720000788</cupid><sourcerecordid>2509172180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-87d5005544d8150182e85d5ee445c5feb451dafaaf8b3e83b8b5742c49cfdddc3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0WQmmUmXUl-FiqWtbodMclNSZiY1SYXu_Af_0C9xhhZciHdzL5zH5RyELim5poQWNwuS5hkvWJGSbgohjtCAsnyUiDwXx2jQw0mPn6KzENaE0IyyYoA-ZtLLBiJ4PNHQRmusktG6FjuDF5vulPX359cSmo3zssZv0u9su8Iz7xSEAAFXOyzx87aONpm7ykW82IUIDbYtnoOsbYhW4TtrzDb0tg8Wah3O0YmRdYCLwx6i14f75fgpmb48Tsa300RlOY-JKDQnhHPGtKCcUJGC4JoDMMYVN1AxTrU0UhpRZSCySlRdxlSxkTJaa5UN0dXed-Pd-xZCLNdu69vuZZlyMqJFSgXpWHTPUt6F4MGUG2-bLmlJSdnXW_6pt9NkB41sKm_1Cn6t_1f9AKYTfug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509172180</pqid></control><display><type>article</type><title>Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields</title><source>Cambridge University Press Journals Complete</source><creator>Wu, Wencen ; You, Jie ; Zhang, Yufei ; Li, Mingchen ; Su, Kun</creator><creatorcontrib>Wu, Wencen ; You, Jie ; Zhang, Yufei ; Li, Mingchen ; Su, Kun</creatorcontrib><description>In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our laboratory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574720000788</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Carbon dioxide ; Diffusion ; Identification methods ; Kalman filters ; Multiple robots ; Nonlinear differential equations ; Parameter identification ; Partial differential equations ; Robots ; Robustness</subject><ispartof>Robotica, 2021-05, Vol.39 (5), p.842-861</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-87d5005544d8150182e85d5ee445c5feb451dafaaf8b3e83b8b5742c49cfdddc3</citedby><cites>FETCH-LOGICAL-c365t-87d5005544d8150182e85d5ee445c5feb451dafaaf8b3e83b8b5742c49cfdddc3</cites><orcidid>0000-0002-9080-754X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574720000788/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Wu, Wencen</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Li, Mingchen</creatorcontrib><creatorcontrib>Su, Kun</creatorcontrib><title>Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields</title><title>Robotica</title><addtitle>Robotica</addtitle><description>In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our laboratory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Diffusion</subject><subject>Identification methods</subject><subject>Kalman filters</subject><subject>Multiple robots</subject><subject>Nonlinear differential equations</subject><subject>Parameter identification</subject><subject>Partial differential equations</subject><subject>Robots</subject><subject>Robustness</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0WQmmUmXUl-FiqWtbodMclNSZiY1SYXu_Af_0C9xhhZciHdzL5zH5RyELim5poQWNwuS5hkvWJGSbgohjtCAsnyUiDwXx2jQw0mPn6KzENaE0IyyYoA-ZtLLBiJ4PNHQRmusktG6FjuDF5vulPX359cSmo3zssZv0u9su8Iz7xSEAAFXOyzx87aONpm7ykW82IUIDbYtnoOsbYhW4TtrzDb0tg8Wah3O0YmRdYCLwx6i14f75fgpmb48Tsa300RlOY-JKDQnhHPGtKCcUJGC4JoDMMYVN1AxTrU0UhpRZSCySlRdxlSxkTJaa5UN0dXed-Pd-xZCLNdu69vuZZlyMqJFSgXpWHTPUt6F4MGUG2-bLmlJSdnXW_6pt9NkB41sKm_1Cn6t_1f9AKYTfug</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wu, Wencen</creator><creator>You, Jie</creator><creator>Zhang, Yufei</creator><creator>Li, Mingchen</creator><creator>Su, Kun</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9080-754X</orcidid></search><sort><creationdate>202105</creationdate><title>Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields</title><author>Wu, Wencen ; You, Jie ; Zhang, Yufei ; Li, Mingchen ; Su, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-87d5005544d8150182e85d5ee445c5feb451dafaaf8b3e83b8b5742c49cfdddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Diffusion</topic><topic>Identification methods</topic><topic>Kalman filters</topic><topic>Multiple robots</topic><topic>Nonlinear differential equations</topic><topic>Parameter identification</topic><topic>Partial differential equations</topic><topic>Robots</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wencen</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Li, Mingchen</creatorcontrib><creatorcontrib>Su, Kun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wencen</au><au>You, Jie</au><au>Zhang, Yufei</au><au>Li, Mingchen</au><au>Su, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2021-05</date><risdate>2021</risdate><volume>39</volume><issue>5</issue><spage>842</spage><epage>861</epage><pages>842-861</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our laboratory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574720000788</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9080-754X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2021-05, Vol.39 (5), p.842-861 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2509172180 |
source | Cambridge University Press Journals Complete |
subjects | Algorithms Carbon dioxide Diffusion Identification methods Kalman filters Multiple robots Nonlinear differential equations Parameter identification Partial differential equations Robots Robustness |
title | Parameter Identification of Spatial–Temporal Varying Processes by a Multi-Robot System in Realistic Diffusion Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Identification%20of%20Spatial%E2%80%93Temporal%20Varying%20Processes%20by%20a%20Multi-Robot%20System%20in%20Realistic%20Diffusion%20Fields&rft.jtitle=Robotica&rft.au=Wu,%20Wencen&rft.date=2021-05&rft.volume=39&rft.issue=5&rft.spage=842&rft.epage=861&rft.pages=842-861&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574720000788&rft_dat=%3Cproquest_cross%3E2509172180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509172180&rft_id=info:pmid/&rft_cupid=10_1017_S0263574720000788&rfr_iscdi=true |