Persistence and expansivity through pointwise dynamics
Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2021-01, Vol.36 (1), p.79-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Dynamical systems (London, England) |
container_volume | 36 |
creator | Khan, Abdul Gaffar Das, Tarun |
description | Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of
as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism. |
doi_str_mv | 10.1080/14689367.2020.1825628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509110435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509110435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWPyWN2SvEFBV3oOmTysCltMiapdf69HaouXd3D4Zxz4QPgEsEZggJeo4aJljA-wxDvLYEpw-IITEa_bgmnx3-a8VNwlvMKQsQbxCeAvdiUfS42aFupYCr71auQ_acvQ1WWKW7fl1UffSg7n21lhqA2XudzcOLUOtuLnzsFb_d3r_PHevH88DS_XdQaC1ZqK5CF2DntOBJWG6JbB1mLbIMMRM6QlhNMndZd1yFqMIGGtwo3VkErREfJFFwddvsUP7Y2F7mK2xT2LyWmsEUINmRM0UNKp5hzsk72yW9UGiSCckQkfxHJEZH8QbTv3Rx6PriYNmoX09rIooZ1TC6poH2W5P-Jb-ndbfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509110435</pqid></control><display><type>article</type><title>Persistence and expansivity through pointwise dynamics</title><source>EBSCOhost Business Source Complete</source><creator>Khan, Abdul Gaffar ; Das, Tarun</creator><creatorcontrib>Khan, Abdul Gaffar ; Das, Tarun</creatorcontrib><description>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of
as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2020.1825628</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Borel measure ; Expansive ; Metric space ; persistent ; Primary: 54H20 ; Secondary: 37B25 ; stability ; Topology</subject><ispartof>Dynamical systems (London, England), 2021-01, Vol.36 (1), p.79-87</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Abdul Gaffar</creatorcontrib><creatorcontrib>Das, Tarun</creatorcontrib><title>Persistence and expansivity through pointwise dynamics</title><title>Dynamical systems (London, England)</title><description>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of
as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</description><subject>Borel measure</subject><subject>Expansive</subject><subject>Metric space</subject><subject>persistent</subject><subject>Primary: 54H20</subject><subject>Secondary: 37B25</subject><subject>stability</subject><subject>Topology</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWPyWN2SvEFBV3oOmTysCltMiapdf69HaouXd3D4Zxz4QPgEsEZggJeo4aJljA-wxDvLYEpw-IITEa_bgmnx3-a8VNwlvMKQsQbxCeAvdiUfS42aFupYCr71auQ_acvQ1WWKW7fl1UffSg7n21lhqA2XudzcOLUOtuLnzsFb_d3r_PHevH88DS_XdQaC1ZqK5CF2DntOBJWG6JbB1mLbIMMRM6QlhNMndZd1yFqMIGGtwo3VkErREfJFFwddvsUP7Y2F7mK2xT2LyWmsEUINmRM0UNKp5hzsk72yW9UGiSCckQkfxHJEZH8QbTv3Rx6PriYNmoX09rIooZ1TC6poH2W5P-Jb-ndbfM</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Khan, Abdul Gaffar</creator><creator>Das, Tarun</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210102</creationdate><title>Persistence and expansivity through pointwise dynamics</title><author>Khan, Abdul Gaffar ; Das, Tarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Borel measure</topic><topic>Expansive</topic><topic>Metric space</topic><topic>persistent</topic><topic>Primary: 54H20</topic><topic>Secondary: 37B25</topic><topic>stability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Abdul Gaffar</creatorcontrib><creatorcontrib>Das, Tarun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Abdul Gaffar</au><au>Das, Tarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence and expansivity through pointwise dynamics</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>36</volume><issue>1</issue><spage>79</spage><epage>87</epage><pages>79-87</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of
as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/14689367.2020.1825628</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-9367 |
ispartof | Dynamical systems (London, England), 2021-01, Vol.36 (1), p.79-87 |
issn | 1468-9367 1468-9375 |
language | eng |
recordid | cdi_proquest_journals_2509110435 |
source | EBSCOhost Business Source Complete |
subjects | Borel measure Expansive Metric space persistent Primary: 54H20 Secondary: 37B25 stability Topology |
title | Persistence and expansivity through pointwise dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20and%20expansivity%20through%20pointwise%20dynamics&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Khan,%20Abdul%20Gaffar&rft.date=2021-01-02&rft.volume=36&rft.issue=1&rft.spage=79&rft.epage=87&rft.pages=79-87&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2020.1825628&rft_dat=%3Cproquest_cross%3E2509110435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509110435&rft_id=info:pmid/&rfr_iscdi=true |