Persistence and expansivity through pointwise dynamics

Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2021-01, Vol.36 (1), p.79-87
Hauptverfasser: Khan, Abdul Gaffar, Das, Tarun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 79
container_title Dynamical systems (London, England)
container_volume 36
creator Khan, Abdul Gaffar
Das, Tarun
description Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.
doi_str_mv 10.1080/14689367.2020.1825628
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509110435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509110435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWPyWN2SvEFBV3oOmTysCltMiapdf69HaouXd3D4Zxz4QPgEsEZggJeo4aJljA-wxDvLYEpw-IITEa_bgmnx3-a8VNwlvMKQsQbxCeAvdiUfS42aFupYCr71auQ_acvQ1WWKW7fl1UffSg7n21lhqA2XudzcOLUOtuLnzsFb_d3r_PHevH88DS_XdQaC1ZqK5CF2DntOBJWG6JbB1mLbIMMRM6QlhNMndZd1yFqMIGGtwo3VkErREfJFFwddvsUP7Y2F7mK2xT2LyWmsEUINmRM0UNKp5hzsk72yW9UGiSCckQkfxHJEZH8QbTv3Rx6PriYNmoX09rIooZ1TC6poH2W5P-Jb-ndbfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509110435</pqid></control><display><type>article</type><title>Persistence and expansivity through pointwise dynamics</title><source>EBSCOhost Business Source Complete</source><creator>Khan, Abdul Gaffar ; Das, Tarun</creator><creatorcontrib>Khan, Abdul Gaffar ; Das, Tarun</creatorcontrib><description>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2020.1825628</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Borel measure ; Expansive ; Metric space ; persistent ; Primary: 54H20 ; Secondary: 37B25 ; stability ; Topology</subject><ispartof>Dynamical systems (London, England), 2021-01, Vol.36 (1), p.79-87</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Abdul Gaffar</creatorcontrib><creatorcontrib>Das, Tarun</creatorcontrib><title>Persistence and expansivity through pointwise dynamics</title><title>Dynamical systems (London, England)</title><description>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</description><subject>Borel measure</subject><subject>Expansive</subject><subject>Metric space</subject><subject>persistent</subject><subject>Primary: 54H20</subject><subject>Secondary: 37B25</subject><subject>stability</subject><subject>Topology</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWPyWN2SvEFBV3oOmTysCltMiapdf69HaouXd3D4Zxz4QPgEsEZggJeo4aJljA-wxDvLYEpw-IITEa_bgmnx3-a8VNwlvMKQsQbxCeAvdiUfS42aFupYCr71auQ_acvQ1WWKW7fl1UffSg7n21lhqA2XudzcOLUOtuLnzsFb_d3r_PHevH88DS_XdQaC1ZqK5CF2DntOBJWG6JbB1mLbIMMRM6QlhNMndZd1yFqMIGGtwo3VkErREfJFFwddvsUP7Y2F7mK2xT2LyWmsEUINmRM0UNKp5hzsk72yW9UGiSCckQkfxHJEZH8QbTv3Rx6PriYNmoX09rIooZ1TC6poH2W5P-Jb-ndbfM</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Khan, Abdul Gaffar</creator><creator>Das, Tarun</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210102</creationdate><title>Persistence and expansivity through pointwise dynamics</title><author>Khan, Abdul Gaffar ; Das, Tarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e81e02ffcf718ecd3c9f0691e41d01fd397325fccbbb15d230d79a24ea0e88b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Borel measure</topic><topic>Expansive</topic><topic>Metric space</topic><topic>persistent</topic><topic>Primary: 54H20</topic><topic>Secondary: 37B25</topic><topic>stability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Abdul Gaffar</creatorcontrib><creatorcontrib>Das, Tarun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Abdul Gaffar</au><au>Das, Tarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence and expansivity through pointwise dynamics</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>36</volume><issue>1</issue><spage>79</spage><epage>87</epage><pages>79-87</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>Using the notion of topologically stable points, it is proved that every equicontinuous pointwise topologically stable homeomorphism of a compact metric space is persistent. Also, using the notion of strong topologically stable points of a Borel probability measure, it is shown that every pointwise strong topologically stable Borel probability measure with respect to an equicontinuous homeomorphism of a compact metric space is strong persistent. Further, it is established that any homeomorphism of as well as that of (0,1) does not admit any uniformly expansive point. Finally, these results are used to show that the unit circle does not admit any expansive homeomorphism.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14689367.2020.1825628</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-9367
ispartof Dynamical systems (London, England), 2021-01, Vol.36 (1), p.79-87
issn 1468-9367
1468-9375
language eng
recordid cdi_proquest_journals_2509110435
source EBSCOhost Business Source Complete
subjects Borel measure
Expansive
Metric space
persistent
Primary: 54H20
Secondary: 37B25
stability
Topology
title Persistence and expansivity through pointwise dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20and%20expansivity%20through%20pointwise%20dynamics&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Khan,%20Abdul%20Gaffar&rft.date=2021-01-02&rft.volume=36&rft.issue=1&rft.spage=79&rft.epage=87&rft.pages=79-87&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2020.1825628&rft_dat=%3Cproquest_cross%3E2509110435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509110435&rft_id=info:pmid/&rfr_iscdi=true