Simulation of Branching Random Walks on a Multidimensional Lattice
We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last dec...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-04, Vol.254 (4), p.469-484 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 4 |
container_start_page | 469 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 254 |
creator | Ermishkina, E. M. Yarovaya, E. B. |
description | We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization. |
doi_str_mv | 10.1007/s10958-021-05319-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2508975645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729490920</galeid><sourcerecordid>A729490920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoqKt_wFPBk4foTNI2zVHFj4UVYVU8hmya1mibatKC_nujK-jCIjlMyDzPMORNkgOEYwTgJwFB5CUBigRyhoLARrKDOWek5CLfjHfglDDGs-1kN4RniFJRsp3k7M52Y6sG27u0r9Mzr5x-sq5J58pVfZc-qvYlpLGp0puxHWxlO-NCpFWbztQwWG32kq1atcHs_9RJ8nB5cX9-TWa3V9Pz0xnRGXIgQqDGAlWBSGuuFxkDhlXGmSkqyvOSaqMYUI7ACs2gKEtcoEBKi4VQFeZskhwu5776_m00YZDP_ejjIkHSHErB8yL7QzWqNdK6uh-80p0NWp5yKjIBgkKkyBqqMc541fbO1DY-r_DHa_h4KtNZvVY4WhEiM5j3oVFjCHJ6N19l6ZLVvg_Bm1q-etsp_yER5Fe8chmvjPHK73jll8SWUoiwa4z__Y1_rE-gAqIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508975645</pqid></control><display><type>article</type><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ermishkina, E. M. ; Yarovaya, E. B.</creator><creatorcontrib>Ermishkina, E. M. ; Yarovaya, E. B.</creatorcontrib><description>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05319-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Chemical reaction, Rate of ; Knots ; Mathematics ; Mathematics and Statistics ; Population biology ; Random walk ; Reaction kinetics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (4), p.469-484</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</citedby><cites>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05319-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05319-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ermishkina, E. M.</creatorcontrib><creatorcontrib>Yarovaya, E. B.</creatorcontrib><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Chemical reaction, Rate of</subject><subject>Knots</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Population biology</subject><subject>Random walk</subject><subject>Reaction kinetics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhosoqKt_wFPBk4foTNI2zVHFj4UVYVU8hmya1mibatKC_nujK-jCIjlMyDzPMORNkgOEYwTgJwFB5CUBigRyhoLARrKDOWek5CLfjHfglDDGs-1kN4RniFJRsp3k7M52Y6sG27u0r9Mzr5x-sq5J58pVfZc-qvYlpLGp0puxHWxlO-NCpFWbztQwWG32kq1atcHs_9RJ8nB5cX9-TWa3V9Pz0xnRGXIgQqDGAlWBSGuuFxkDhlXGmSkqyvOSaqMYUI7ACs2gKEtcoEBKi4VQFeZskhwu5776_m00YZDP_ejjIkHSHErB8yL7QzWqNdK6uh-80p0NWp5yKjIBgkKkyBqqMc541fbO1DY-r_DHa_h4KtNZvVY4WhEiM5j3oVFjCHJ6N19l6ZLVvg_Bm1q-etsp_yER5Fe8chmvjPHK73jll8SWUoiwa4z__Y1_rE-gAqIk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ermishkina, E. M.</creator><creator>Yarovaya, E. B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210401</creationdate><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><author>Ermishkina, E. M. ; Yarovaya, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Chemical reaction, Rate of</topic><topic>Knots</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Population biology</topic><topic>Random walk</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermishkina, E. M.</creatorcontrib><creatorcontrib>Yarovaya, E. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermishkina, E. M.</au><au>Yarovaya, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Branching Random Walks on a Multidimensional Lattice</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>254</volume><issue>4</issue><spage>469</spage><epage>484</epage><pages>469-484</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05319-0</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (4), p.469-484 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2508975645 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Analysis Chemical reaction, Rate of Knots Mathematics Mathematics and Statistics Population biology Random walk Reaction kinetics |
title | Simulation of Branching Random Walks on a Multidimensional Lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Branching%20Random%20Walks%20on%20a%20Multidimensional%20Lattice&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ermishkina,%20E.%20M.&rft.date=2021-04-01&rft.volume=254&rft.issue=4&rft.spage=469&rft.epage=484&rft.pages=469-484&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05319-0&rft_dat=%3Cgale_proqu%3EA729490920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508975645&rft_id=info:pmid/&rft_galeid=A729490920&rfr_iscdi=true |