Simulation of Branching Random Walks on a Multidimensional Lattice

We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-04, Vol.254 (4), p.469-484
Hauptverfasser: Ermishkina, E. M., Yarovaya, E. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 4
container_start_page 469
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 254
creator Ermishkina, E. M.
Yarovaya, E. B.
description We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.
doi_str_mv 10.1007/s10958-021-05319-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2508975645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729490920</galeid><sourcerecordid>A729490920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoqKt_wFPBk4foTNI2zVHFj4UVYVU8hmya1mibatKC_nujK-jCIjlMyDzPMORNkgOEYwTgJwFB5CUBigRyhoLARrKDOWek5CLfjHfglDDGs-1kN4RniFJRsp3k7M52Y6sG27u0r9Mzr5x-sq5J58pVfZc-qvYlpLGp0puxHWxlO-NCpFWbztQwWG32kq1atcHs_9RJ8nB5cX9-TWa3V9Pz0xnRGXIgQqDGAlWBSGuuFxkDhlXGmSkqyvOSaqMYUI7ACs2gKEtcoEBKi4VQFeZskhwu5776_m00YZDP_ejjIkHSHErB8yL7QzWqNdK6uh-80p0NWp5yKjIBgkKkyBqqMc541fbO1DY-r_DHa_h4KtNZvVY4WhEiM5j3oVFjCHJ6N19l6ZLVvg_Bm1q-etsp_yER5Fe8chmvjPHK73jll8SWUoiwa4z__Y1_rE-gAqIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508975645</pqid></control><display><type>article</type><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ermishkina, E. M. ; Yarovaya, E. B.</creator><creatorcontrib>Ermishkina, E. M. ; Yarovaya, E. B.</creatorcontrib><description>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05319-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Chemical reaction, Rate of ; Knots ; Mathematics ; Mathematics and Statistics ; Population biology ; Random walk ; Reaction kinetics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (4), p.469-484</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</citedby><cites>FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05319-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05319-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ermishkina, E. M.</creatorcontrib><creatorcontrib>Yarovaya, E. B.</creatorcontrib><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Chemical reaction, Rate of</subject><subject>Knots</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Population biology</subject><subject>Random walk</subject><subject>Reaction kinetics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhosoqKt_wFPBk4foTNI2zVHFj4UVYVU8hmya1mibatKC_nujK-jCIjlMyDzPMORNkgOEYwTgJwFB5CUBigRyhoLARrKDOWek5CLfjHfglDDGs-1kN4RniFJRsp3k7M52Y6sG27u0r9Mzr5x-sq5J58pVfZc-qvYlpLGp0puxHWxlO-NCpFWbztQwWG32kq1atcHs_9RJ8nB5cX9-TWa3V9Pz0xnRGXIgQqDGAlWBSGuuFxkDhlXGmSkqyvOSaqMYUI7ACs2gKEtcoEBKi4VQFeZskhwu5776_m00YZDP_ejjIkHSHErB8yL7QzWqNdK6uh-80p0NWp5yKjIBgkKkyBqqMc541fbO1DY-r_DHa_h4KtNZvVY4WhEiM5j3oVFjCHJ6N19l6ZLVvg_Bm1q-etsp_yER5Fe8chmvjPHK73jll8SWUoiwa4z__Y1_rE-gAqIk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ermishkina, E. M.</creator><creator>Yarovaya, E. B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210401</creationdate><title>Simulation of Branching Random Walks on a Multidimensional Lattice</title><author>Ermishkina, E. M. ; Yarovaya, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4170-991c161a6112f7cb43031d473e6d27582cea30271036c306881b191226b9ad153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Chemical reaction, Rate of</topic><topic>Knots</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Population biology</topic><topic>Random walk</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermishkina, E. M.</creatorcontrib><creatorcontrib>Yarovaya, E. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermishkina, E. M.</au><au>Yarovaya, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Branching Random Walks on a Multidimensional Lattice</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>254</volume><issue>4</issue><spage>469</spage><epage>484</epage><pages>469-484</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider continuous-time branching random walks on multidimensional lattices with birth and death of particles at a finite number of lattice points. Such processes are used in numerous applications, in particular, in statistical physics, population dynamics, and chemical kinetics. In the last decade, for various models of branching random walks, a series of limit theorems about the behavior of the process for large times has been obtained. However, it is almost impossible to analyze analytically branching random walks on finite time intervals; so in this paper we present an algorithm for simulating branching random walks and examples of its numerical realization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05319-0</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (4), p.469-484
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2508975645
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Chemical reaction, Rate of
Knots
Mathematics
Mathematics and Statistics
Population biology
Random walk
Reaction kinetics
title Simulation of Branching Random Walks on a Multidimensional Lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Branching%20Random%20Walks%20on%20a%20Multidimensional%20Lattice&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ermishkina,%20E.%20M.&rft.date=2021-04-01&rft.volume=254&rft.issue=4&rft.spage=469&rft.epage=484&rft.pages=469-484&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05319-0&rft_dat=%3Cgale_proqu%3EA729490920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508975645&rft_id=info:pmid/&rft_galeid=A729490920&rfr_iscdi=true