Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology
Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivi...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2021-03, Vol.63 (3), p.435-441 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | 3 |
container_start_page | 435 |
container_title | Physics of the solid state |
container_volume | 63 |
creator | Kostishin, V. G. Shakirzyanov, R. I. Nalogin, A. G. Shcherbakov, S. V. Isaev, I. M. Nemirovich, M. A. Mikhailenko, M. A. Korobeinikov, M. V. Mezentseva, M. P. Salogub, D. V. |
description | Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology. |
doi_str_mv | 10.1134/S1063783421030094 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2508974421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657530760</galeid><sourcerecordid>A657530760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</originalsourceid><addsrcrecordid>eNp1kc9qGzEQh5fSQtO0D9CboKceNtVY0v45hjRxDYGE2D30tGi1I1thLbkjmXRvPfbeN-yTVMaBEErRQeKn79OImaJ4D_wMQMhPS-CVqBshZ8AF5618UZwAb3lZyYq_PJwrUR7uXxdvYrznHABUe1L8uhzRJHJGj0z7gX12-BiwWwo7pOQwsmDZt5TD_fbPz98LCp5dIZFLyOaaPCZ2G8bJ0BSTHiObU3jwrJ9Y2iC704PTyQWfzdUGaZsLLZ1PSM6v2QrNxocxrKe3xSubZXz3uJ8WX68uVxdfyuub-eLi_Lo0omlTqfRMaDAtKK1k2yAOAD00VnFrdG2M6iUX0tYGBJq-bo0G25umzjwfZGXEafHh-O6Owvc9xtTdhz35XLKbKd60tcwtzNTZkVrrETvnbUikTV4Dbp0JHq3L-XmlaiV4XfEsfHwmZCbhj7TW-xi7xfLuOQtH1lCIkdB2O3JbTVMHvDtMs_tnmtmZHZ24OzQO6enb_5f-AmxDpHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508974421</pqid></control><display><type>article</type><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><source>Springer Nature - Complete Springer Journals</source><creator>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</creator><creatorcontrib>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</creatorcontrib><description>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783421030094</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation energy ; Analysis ; Ceramic materials ; Ceramics ; Complex permittivity ; Dielectric loss ; Dielectric properties ; Dielectrics ; Electric properties ; Electrical conductivity ; Electron beams ; Frequency measurement ; Frequency ranges ; Iron ; Iron compounds ; Parameters ; Physics ; Physics and Astronomy ; Polycrystals ; Radiation ; Rare earth metals ; Semiconductors ; Sintering ; Solid State Physics ; Yttrium</subject><ispartof>Physics of the solid state, 2021-03, Vol.63 (3), p.435-441</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</citedby><cites>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783421030094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783421030094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kostishin, V. G.</creatorcontrib><creatorcontrib>Shakirzyanov, R. I.</creatorcontrib><creatorcontrib>Nalogin, A. G.</creatorcontrib><creatorcontrib>Shcherbakov, S. V.</creatorcontrib><creatorcontrib>Isaev, I. M.</creatorcontrib><creatorcontrib>Nemirovich, M. A.</creatorcontrib><creatorcontrib>Mikhailenko, M. A.</creatorcontrib><creatorcontrib>Korobeinikov, M. V.</creatorcontrib><creatorcontrib>Mezentseva, M. P.</creatorcontrib><creatorcontrib>Salogub, D. V.</creatorcontrib><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</description><subject>Activation energy</subject><subject>Analysis</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Complex permittivity</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electron beams</subject><subject>Frequency measurement</subject><subject>Frequency ranges</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Radiation</subject><subject>Rare earth metals</subject><subject>Semiconductors</subject><subject>Sintering</subject><subject>Solid State Physics</subject><subject>Yttrium</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qGzEQh5fSQtO0D9CboKceNtVY0v45hjRxDYGE2D30tGi1I1thLbkjmXRvPfbeN-yTVMaBEErRQeKn79OImaJ4D_wMQMhPS-CVqBshZ8AF5618UZwAb3lZyYq_PJwrUR7uXxdvYrznHABUe1L8uhzRJHJGj0z7gX12-BiwWwo7pOQwsmDZt5TD_fbPz98LCp5dIZFLyOaaPCZ2G8bJ0BSTHiObU3jwrJ9Y2iC704PTyQWfzdUGaZsLLZ1PSM6v2QrNxocxrKe3xSubZXz3uJ8WX68uVxdfyuub-eLi_Lo0omlTqfRMaDAtKK1k2yAOAD00VnFrdG2M6iUX0tYGBJq-bo0G25umzjwfZGXEafHh-O6Owvc9xtTdhz35XLKbKd60tcwtzNTZkVrrETvnbUikTV4Dbp0JHq3L-XmlaiV4XfEsfHwmZCbhj7TW-xi7xfLuOQtH1lCIkdB2O3JbTVMHvDtMs_tnmtmZHZ24OzQO6enb_5f-AmxDpHs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kostishin, V. G.</creator><creator>Shakirzyanov, R. I.</creator><creator>Nalogin, A. G.</creator><creator>Shcherbakov, S. V.</creator><creator>Isaev, I. M.</creator><creator>Nemirovich, M. A.</creator><creator>Mikhailenko, M. A.</creator><creator>Korobeinikov, M. V.</creator><creator>Mezentseva, M. P.</creator><creator>Salogub, D. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210301</creationdate><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><author>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Analysis</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Complex permittivity</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electron beams</topic><topic>Frequency measurement</topic><topic>Frequency ranges</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Radiation</topic><topic>Rare earth metals</topic><topic>Semiconductors</topic><topic>Sintering</topic><topic>Solid State Physics</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostishin, V. G.</creatorcontrib><creatorcontrib>Shakirzyanov, R. I.</creatorcontrib><creatorcontrib>Nalogin, A. G.</creatorcontrib><creatorcontrib>Shcherbakov, S. V.</creatorcontrib><creatorcontrib>Isaev, I. M.</creatorcontrib><creatorcontrib>Nemirovich, M. A.</creatorcontrib><creatorcontrib>Mikhailenko, M. A.</creatorcontrib><creatorcontrib>Korobeinikov, M. V.</creatorcontrib><creatorcontrib>Mezentseva, M. P.</creatorcontrib><creatorcontrib>Salogub, D. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostishin, V. G.</au><au>Shakirzyanov, R. I.</au><au>Nalogin, A. G.</au><au>Shcherbakov, S. V.</au><au>Isaev, I. M.</au><au>Nemirovich, M. A.</au><au>Mikhailenko, M. A.</au><au>Korobeinikov, M. V.</au><au>Mezentseva, M. P.</au><au>Salogub, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>63</volume><issue>3</issue><spage>435</spage><epage>441</epage><pages>435-441</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783421030094</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2021-03, Vol.63 (3), p.435-441 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_proquest_journals_2508974421 |
source | Springer Nature - Complete Springer Journals |
subjects | Activation energy Analysis Ceramic materials Ceramics Complex permittivity Dielectric loss Dielectric properties Dielectrics Electric properties Electrical conductivity Electron beams Frequency measurement Frequency ranges Iron Iron compounds Parameters Physics Physics and Astronomy Polycrystals Radiation Rare earth metals Semiconductors Sintering Solid State Physics Yttrium |
title | Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20Dielectric%20Properties%20of%20Yttrium%E2%80%93Iron%20Ferrite%20Garnet%20Polycrystals%20Grown%20by%20the%20Radiation%E2%80%93Thermal%20Sintering%20Technology&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Kostishin,%20V.%20G.&rft.date=2021-03-01&rft.volume=63&rft.issue=3&rft.spage=435&rft.epage=441&rft.pages=435-441&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783421030094&rft_dat=%3Cgale_proqu%3EA657530760%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508974421&rft_id=info:pmid/&rft_galeid=A657530760&rfr_iscdi=true |