Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology

Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2021-03, Vol.63 (3), p.435-441
Hauptverfasser: Kostishin, V. G., Shakirzyanov, R. I., Nalogin, A. G., Shcherbakov, S. V., Isaev, I. M., Nemirovich, M. A., Mikhailenko, M. A., Korobeinikov, M. V., Mezentseva, M. P., Salogub, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 3
container_start_page 435
container_title Physics of the solid state
container_volume 63
creator Kostishin, V. G.
Shakirzyanov, R. I.
Nalogin, A. G.
Shcherbakov, S. V.
Isaev, I. M.
Nemirovich, M. A.
Mikhailenko, M. A.
Korobeinikov, M. V.
Mezentseva, M. P.
Salogub, D. V.
description Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.
doi_str_mv 10.1134/S1063783421030094
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2508974421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657530760</galeid><sourcerecordid>A657530760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</originalsourceid><addsrcrecordid>eNp1kc9qGzEQh5fSQtO0D9CboKceNtVY0v45hjRxDYGE2D30tGi1I1thLbkjmXRvPfbeN-yTVMaBEErRQeKn79OImaJ4D_wMQMhPS-CVqBshZ8AF5618UZwAb3lZyYq_PJwrUR7uXxdvYrznHABUe1L8uhzRJHJGj0z7gX12-BiwWwo7pOQwsmDZt5TD_fbPz98LCp5dIZFLyOaaPCZ2G8bJ0BSTHiObU3jwrJ9Y2iC704PTyQWfzdUGaZsLLZ1PSM6v2QrNxocxrKe3xSubZXz3uJ8WX68uVxdfyuub-eLi_Lo0omlTqfRMaDAtKK1k2yAOAD00VnFrdG2M6iUX0tYGBJq-bo0G25umzjwfZGXEafHh-O6Owvc9xtTdhz35XLKbKd60tcwtzNTZkVrrETvnbUikTV4Dbp0JHq3L-XmlaiV4XfEsfHwmZCbhj7TW-xi7xfLuOQtH1lCIkdB2O3JbTVMHvDtMs_tnmtmZHZ24OzQO6enb_5f-AmxDpHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508974421</pqid></control><display><type>article</type><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><source>Springer Nature - Complete Springer Journals</source><creator>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</creator><creatorcontrib>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</creatorcontrib><description>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783421030094</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation energy ; Analysis ; Ceramic materials ; Ceramics ; Complex permittivity ; Dielectric loss ; Dielectric properties ; Dielectrics ; Electric properties ; Electrical conductivity ; Electron beams ; Frequency measurement ; Frequency ranges ; Iron ; Iron compounds ; Parameters ; Physics ; Physics and Astronomy ; Polycrystals ; Radiation ; Rare earth metals ; Semiconductors ; Sintering ; Solid State Physics ; Yttrium</subject><ispartof>Physics of the solid state, 2021-03, Vol.63 (3), p.435-441</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</citedby><cites>FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783421030094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783421030094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kostishin, V. G.</creatorcontrib><creatorcontrib>Shakirzyanov, R. I.</creatorcontrib><creatorcontrib>Nalogin, A. G.</creatorcontrib><creatorcontrib>Shcherbakov, S. V.</creatorcontrib><creatorcontrib>Isaev, I. M.</creatorcontrib><creatorcontrib>Nemirovich, M. A.</creatorcontrib><creatorcontrib>Mikhailenko, M. A.</creatorcontrib><creatorcontrib>Korobeinikov, M. V.</creatorcontrib><creatorcontrib>Mezentseva, M. P.</creatorcontrib><creatorcontrib>Salogub, D. V.</creatorcontrib><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</description><subject>Activation energy</subject><subject>Analysis</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Complex permittivity</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electron beams</subject><subject>Frequency measurement</subject><subject>Frequency ranges</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Radiation</subject><subject>Rare earth metals</subject><subject>Semiconductors</subject><subject>Sintering</subject><subject>Solid State Physics</subject><subject>Yttrium</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qGzEQh5fSQtO0D9CboKceNtVY0v45hjRxDYGE2D30tGi1I1thLbkjmXRvPfbeN-yTVMaBEErRQeKn79OImaJ4D_wMQMhPS-CVqBshZ8AF5618UZwAb3lZyYq_PJwrUR7uXxdvYrznHABUe1L8uhzRJHJGj0z7gX12-BiwWwo7pOQwsmDZt5TD_fbPz98LCp5dIZFLyOaaPCZ2G8bJ0BSTHiObU3jwrJ9Y2iC704PTyQWfzdUGaZsLLZ1PSM6v2QrNxocxrKe3xSubZXz3uJ8WX68uVxdfyuub-eLi_Lo0omlTqfRMaDAtKK1k2yAOAD00VnFrdG2M6iUX0tYGBJq-bo0G25umzjwfZGXEafHh-O6Owvc9xtTdhz35XLKbKd60tcwtzNTZkVrrETvnbUikTV4Dbp0JHq3L-XmlaiV4XfEsfHwmZCbhj7TW-xi7xfLuOQtH1lCIkdB2O3JbTVMHvDtMs_tnmtmZHZ24OzQO6enb_5f-AmxDpHs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kostishin, V. G.</creator><creator>Shakirzyanov, R. I.</creator><creator>Nalogin, A. G.</creator><creator>Shcherbakov, S. V.</creator><creator>Isaev, I. M.</creator><creator>Nemirovich, M. A.</creator><creator>Mikhailenko, M. A.</creator><creator>Korobeinikov, M. V.</creator><creator>Mezentseva, M. P.</creator><creator>Salogub, D. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210301</creationdate><title>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</title><author>Kostishin, V. G. ; Shakirzyanov, R. I. ; Nalogin, A. G. ; Shcherbakov, S. V. ; Isaev, I. M. ; Nemirovich, M. A. ; Mikhailenko, M. A. ; Korobeinikov, M. V. ; Mezentseva, M. P. ; Salogub, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5a23a1c915a5498eed11b18f50fca7cc5b4034f7c13ecb79ca1fbc8715a0d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Analysis</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Complex permittivity</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electron beams</topic><topic>Frequency measurement</topic><topic>Frequency ranges</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Radiation</topic><topic>Rare earth metals</topic><topic>Semiconductors</topic><topic>Sintering</topic><topic>Solid State Physics</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostishin, V. G.</creatorcontrib><creatorcontrib>Shakirzyanov, R. I.</creatorcontrib><creatorcontrib>Nalogin, A. G.</creatorcontrib><creatorcontrib>Shcherbakov, S. V.</creatorcontrib><creatorcontrib>Isaev, I. M.</creatorcontrib><creatorcontrib>Nemirovich, M. A.</creatorcontrib><creatorcontrib>Mikhailenko, M. A.</creatorcontrib><creatorcontrib>Korobeinikov, M. V.</creatorcontrib><creatorcontrib>Mezentseva, M. P.</creatorcontrib><creatorcontrib>Salogub, D. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostishin, V. G.</au><au>Shakirzyanov, R. I.</au><au>Nalogin, A. G.</au><au>Shcherbakov, S. V.</au><au>Isaev, I. M.</au><au>Nemirovich, M. A.</au><au>Mikhailenko, M. A.</au><au>Korobeinikov, M. V.</au><au>Mezentseva, M. P.</au><au>Salogub, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>63</volume><issue>3</issue><spage>435</spage><epage>441</epage><pages>435-441</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783421030094</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2021-03, Vol.63 (3), p.435-441
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_2508974421
source Springer Nature - Complete Springer Journals
subjects Activation energy
Analysis
Ceramic materials
Ceramics
Complex permittivity
Dielectric loss
Dielectric properties
Dielectrics
Electric properties
Electrical conductivity
Electron beams
Frequency measurement
Frequency ranges
Iron
Iron compounds
Parameters
Physics
Physics and Astronomy
Polycrystals
Radiation
Rare earth metals
Semiconductors
Sintering
Solid State Physics
Yttrium
title Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20Dielectric%20Properties%20of%20Yttrium%E2%80%93Iron%20Ferrite%20Garnet%20Polycrystals%20Grown%20by%20the%20Radiation%E2%80%93Thermal%20Sintering%20Technology&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Kostishin,%20V.%20G.&rft.date=2021-03-01&rft.volume=63&rft.issue=3&rft.spage=435&rft.epage=441&rft.pages=435-441&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783421030094&rft_dat=%3Cgale_proqu%3EA657530760%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508974421&rft_id=info:pmid/&rft_galeid=A657530760&rfr_iscdi=true