Simplicial sets inside cubical sets
As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohe...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2021-01, Vol.37 (13), p.276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 276 |
container_title | Theory and applications of categories |
container_volume | 37 |
creator | Streicher, Thomas Weinberger, Jonathan |
description | As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2508914204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508914204</sourcerecordid><originalsourceid>FETCH-proquest_journals_25089142043</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQDs7MLcjJTM5MzFEoTi0pVsjMK85MSVVILk3KTIaK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGpgYWloYmRgYkxcaoAUeYtxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508914204</pqid></control><display><type>article</type><title>Simplicial sets inside cubical sets</title><source>Freely Accessible Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Streicher, Thomas ; Weinberger, Jonathan</creator><creatorcontrib>Streicher, Thomas ; Weinberger, Jonathan</creatorcontrib><description>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Classification ; Finite element analysis ; Homotopy theory ; Lattices ; Mathematical models ; Model testing ; Set theory ; Sheaves ; Topology</subject><ispartof>Theory and applications of categories, 2021-01, Vol.37 (13), p.276</ispartof><rights>Copyright R. Rosebrugh 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Streicher, Thomas</creatorcontrib><creatorcontrib>Weinberger, Jonathan</creatorcontrib><title>Simplicial sets inside cubical sets</title><title>Theory and applications of categories</title><description>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</description><subject>Classification</subject><subject>Finite element analysis</subject><subject>Homotopy theory</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Set theory</subject><subject>Sheaves</subject><subject>Topology</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQDs7MLcjJTM5MzFEoTi0pVsjMK85MSVVILk3KTIaK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGpgYWloYmRgYkxcaoAUeYtxA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Streicher, Thomas</creator><creator>Weinberger, Jonathan</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20210101</creationdate><title>Simplicial sets inside cubical sets</title><author>Streicher, Thomas ; Weinberger, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25089142043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Finite element analysis</topic><topic>Homotopy theory</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Set theory</topic><topic>Sheaves</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streicher, Thomas</creatorcontrib><creatorcontrib>Weinberger, Jonathan</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streicher, Thomas</au><au>Weinberger, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplicial sets inside cubical sets</atitle><jtitle>Theory and applications of categories</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>13</issue><spage>276</spage><pages>276-</pages><eissn>1201-561X</eissn><abstract>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2021-01, Vol.37 (13), p.276 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2508914204 |
source | Freely Accessible Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Finite element analysis Homotopy theory Lattices Mathematical models Model testing Set theory Sheaves Topology |
title | Simplicial sets inside cubical sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplicial%20sets%20inside%20cubical%20sets&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Streicher,%20Thomas&rft.date=2021-01-01&rft.volume=37&rft.issue=13&rft.spage=276&rft.pages=276-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2508914204%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508914204&rft_id=info:pmid/&rfr_iscdi=true |