Simplicial sets inside cubical sets

As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2021-01, Vol.37 (13), p.276
Hauptverfasser: Streicher, Thomas, Weinberger, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 276
container_title Theory and applications of categories
container_volume 37
creator Streicher, Thomas
Weinberger, Jonathan
description As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2508914204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508914204</sourcerecordid><originalsourceid>FETCH-proquest_journals_25089142043</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQDs7MLcjJTM5MzFEoTi0pVsjMK85MSVVILk3KTIaK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGpgYWloYmRgYkxcaoAUeYtxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508914204</pqid></control><display><type>article</type><title>Simplicial sets inside cubical sets</title><source>Freely Accessible Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Streicher, Thomas ; Weinberger, Jonathan</creator><creatorcontrib>Streicher, Thomas ; Weinberger, Jonathan</creatorcontrib><description>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Classification ; Finite element analysis ; Homotopy theory ; Lattices ; Mathematical models ; Model testing ; Set theory ; Sheaves ; Topology</subject><ispartof>Theory and applications of categories, 2021-01, Vol.37 (13), p.276</ispartof><rights>Copyright R. Rosebrugh 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Streicher, Thomas</creatorcontrib><creatorcontrib>Weinberger, Jonathan</creatorcontrib><title>Simplicial sets inside cubical sets</title><title>Theory and applications of categories</title><description>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</description><subject>Classification</subject><subject>Finite element analysis</subject><subject>Homotopy theory</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Set theory</subject><subject>Sheaves</subject><subject>Topology</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQDs7MLcjJTM5MzFEoTi0pVsjMK85MSVVILk3KTIaK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGpgYWloYmRgYkxcaoAUeYtxA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Streicher, Thomas</creator><creator>Weinberger, Jonathan</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20210101</creationdate><title>Simplicial sets inside cubical sets</title><author>Streicher, Thomas ; Weinberger, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25089142043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Finite element analysis</topic><topic>Homotopy theory</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Set theory</topic><topic>Sheaves</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streicher, Thomas</creatorcontrib><creatorcontrib>Weinberger, Jonathan</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streicher, Thomas</au><au>Weinberger, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplicial sets inside cubical sets</atitle><jtitle>Theory and applications of categories</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>13</issue><spage>276</spage><pages>276-</pages><eissn>1201-561X</eissn><abstract>As observed recently by various people the topos sSet of simplicial sets appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves over the category FL of finite lattices and monotone maps between them. The latter is a variant of the cubical model of type theory due to Cohen et al. for the purpose of providing a model for a variant of type theory which validates Voevodsky's Univalence Axiom and has computational meaning. Our contribution consists in constructing in cSet a fibrant univalent universe for those types that are sheaves. This makes it possible to consider sSet as a submodel of cSet for univalent Martin-Löf type theory. Furthermore, we address the question whether the type-theoretic Cisinski model structure considered on cSet coincides with the test model structure, the latter of which models the homotopy theory of spaces. We do not provide an answer to this open problem, but instead give a reformulation in terms of the adjoint functors at hand.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record>
fulltext fulltext
identifier EISSN: 1201-561X
ispartof Theory and applications of categories, 2021-01, Vol.37 (13), p.276
issn 1201-561X
language eng
recordid cdi_proquest_journals_2508914204
source Freely Accessible Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification
Finite element analysis
Homotopy theory
Lattices
Mathematical models
Model testing
Set theory
Sheaves
Topology
title Simplicial sets inside cubical sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplicial%20sets%20inside%20cubical%20sets&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Streicher,%20Thomas&rft.date=2021-01-01&rft.volume=37&rft.issue=13&rft.spage=276&rft.pages=276-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2508914204%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508914204&rft_id=info:pmid/&rfr_iscdi=true