Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase

Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105
Hauptverfasser: Yi, Wanli, She, Xuefeng, Zhang, Huai, An, Zhenlong, Wang, Jingsong, Xue, Qingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 2
container_start_page 1095
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 52
creator Yi, Wanli
She, Xuefeng
Zhang, Huai
An, Zhenlong
Wang, Jingsong
Xue, Qingguo
description Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La) 5 (SiO 4 ) 6 F, cuspidine (Ca 4 Si 2 O 7 F 2 ), and fluorite (CaF 2 ), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.
doi_str_mv 10.1007/s11663-021-02081-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508715766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508715766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZNkmToy7rByy4qHsOaZtsu9R2TbrC-uuNVhA8eJiPw_vMwEPIOcIlAuRXAVGIjEKKsUAixQMyQc4yigrFYdwhzygXyI_JSQgbABBKZROyWnpbNttmMEPTd0nvkifjbTI3fqiT59asE9NVyVDbZOb3YTBt23yM0Rtbm_em93-YZW2CPSVHzrTBnv3MKVndzl9m93TxePcwu17QMuNyoCaHqmTCIsi0yI0E4GnKTFFY5lwhuXRKcVkoVzJZxZ5zxaqCC2sFUyWabEouxrtb37_tbBj0pt_5Lr7UKQeZI8-jlilJx1Tp-xC8dXrrm1fj9xpBf-nToz4d9elvfRojlI1QiOFubf3v6X-oT_W7cjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508715766</pqid></control><display><type>article</type><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</creator><creatorcontrib>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</creatorcontrib><description>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La) 5 (SiO 4 ) 6 F, cuspidine (Ca 4 Si 2 O 7 F 2 ), and fluorite (CaF 2 ), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02081-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal growth ; Crystal structure ; Crystallization ; Earth ; Fluorite ; Growth models ; Iron ores ; Materials Science ; Metallic Materials ; Morphology ; Nanotechnology ; Nucleation ; Original Research Article ; Pulverized coal ; Slag ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</citedby><cites>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02081-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02081-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yi, Wanli</creatorcontrib><creatorcontrib>She, Xuefeng</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>An, Zhenlong</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Xue, Qingguo</creatorcontrib><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La) 5 (SiO 4 ) 6 F, cuspidine (Ca 4 Si 2 O 7 F 2 ), and fluorite (CaF 2 ), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Earth</subject><subject>Fluorite</subject><subject>Growth models</subject><subject>Iron ores</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Original Research Article</subject><subject>Pulverized coal</subject><subject>Slag</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZNkmToy7rByy4qHsOaZtsu9R2TbrC-uuNVhA8eJiPw_vMwEPIOcIlAuRXAVGIjEKKsUAixQMyQc4yigrFYdwhzygXyI_JSQgbABBKZROyWnpbNttmMEPTd0nvkifjbTI3fqiT59asE9NVyVDbZOb3YTBt23yM0Rtbm_em93-YZW2CPSVHzrTBnv3MKVndzl9m93TxePcwu17QMuNyoCaHqmTCIsi0yI0E4GnKTFFY5lwhuXRKcVkoVzJZxZ5zxaqCC2sFUyWabEouxrtb37_tbBj0pt_5Lr7UKQeZI8-jlilJx1Tp-xC8dXrrm1fj9xpBf-nToz4d9elvfRojlI1QiOFubf3v6X-oT_W7cjw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yi, Wanli</creator><creator>She, Xuefeng</creator><creator>Zhang, Huai</creator><creator>An, Zhenlong</creator><creator>Wang, Jingsong</creator><creator>Xue, Qingguo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210401</creationdate><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><author>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Earth</topic><topic>Fluorite</topic><topic>Growth models</topic><topic>Iron ores</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Original Research Article</topic><topic>Pulverized coal</topic><topic>Slag</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Wanli</creatorcontrib><creatorcontrib>She, Xuefeng</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>An, Zhenlong</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Xue, Qingguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Wanli</au><au>She, Xuefeng</au><au>Zhang, Huai</au><au>An, Zhenlong</au><au>Wang, Jingsong</au><au>Xue, Qingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>52</volume><issue>2</issue><spage>1095</spage><epage>1105</epage><pages>1095-1105</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La) 5 (SiO 4 ) 6 F, cuspidine (Ca 4 Si 2 O 7 F 2 ), and fluorite (CaF 2 ), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02081-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_2508715766
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal growth
Crystal structure
Crystallization
Earth
Fluorite
Growth models
Iron ores
Materials Science
Metallic Materials
Morphology
Nanotechnology
Nucleation
Original Research Article
Pulverized coal
Slag
Structural Materials
Surfaces and Interfaces
Thin Films
title Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20of%20Rare%20Earth%20Slag%20and%20the%20Crystallization%20Behavior%20of%20Rare%20Earth%20Phase&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Yi,%20Wanli&rft.date=2021-04-01&rft.volume=52&rft.issue=2&rft.spage=1095&rft.epage=1105&rft.pages=1095-1105&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02081-1&rft_dat=%3Cproquest_cross%3E2508715766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508715766&rft_id=info:pmid/&rfr_iscdi=true