Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase
Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of t...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1105 |
---|---|
container_issue | 2 |
container_start_page | 1095 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 52 |
creator | Yi, Wanli She, Xuefeng Zhang, Huai An, Zhenlong Wang, Jingsong Xue, Qingguo |
description | Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La)
5
(SiO
4
)
6
F, cuspidine (Ca
4
Si
2
O
7
F
2
), and fluorite (CaF
2
), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described. |
doi_str_mv | 10.1007/s11663-021-02081-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508715766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508715766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZNkmToy7rByy4qHsOaZtsu9R2TbrC-uuNVhA8eJiPw_vMwEPIOcIlAuRXAVGIjEKKsUAixQMyQc4yigrFYdwhzygXyI_JSQgbABBKZROyWnpbNttmMEPTd0nvkifjbTI3fqiT59asE9NVyVDbZOb3YTBt23yM0Rtbm_em93-YZW2CPSVHzrTBnv3MKVndzl9m93TxePcwu17QMuNyoCaHqmTCIsi0yI0E4GnKTFFY5lwhuXRKcVkoVzJZxZ5zxaqCC2sFUyWabEouxrtb37_tbBj0pt_5Lr7UKQeZI8-jlilJx1Tp-xC8dXrrm1fj9xpBf-nToz4d9elvfRojlI1QiOFubf3v6X-oT_W7cjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508715766</pqid></control><display><type>article</type><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</creator><creatorcontrib>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</creatorcontrib><description>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La)
5
(SiO
4
)
6
F, cuspidine (Ca
4
Si
2
O
7
F
2
), and fluorite (CaF
2
), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02081-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal growth ; Crystal structure ; Crystallization ; Earth ; Fluorite ; Growth models ; Iron ores ; Materials Science ; Metallic Materials ; Morphology ; Nanotechnology ; Nucleation ; Original Research Article ; Pulverized coal ; Slag ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2021</rights><rights>The Minerals, Metals & Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</citedby><cites>FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02081-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02081-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yi, Wanli</creatorcontrib><creatorcontrib>She, Xuefeng</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>An, Zhenlong</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Xue, Qingguo</creatorcontrib><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La)
5
(SiO
4
)
6
F, cuspidine (Ca
4
Si
2
O
7
F
2
), and fluorite (CaF
2
), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Earth</subject><subject>Fluorite</subject><subject>Growth models</subject><subject>Iron ores</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Original Research Article</subject><subject>Pulverized coal</subject><subject>Slag</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZNkmToy7rByy4qHsOaZtsu9R2TbrC-uuNVhA8eJiPw_vMwEPIOcIlAuRXAVGIjEKKsUAixQMyQc4yigrFYdwhzygXyI_JSQgbABBKZROyWnpbNttmMEPTd0nvkifjbTI3fqiT59asE9NVyVDbZOb3YTBt23yM0Rtbm_em93-YZW2CPSVHzrTBnv3MKVndzl9m93TxePcwu17QMuNyoCaHqmTCIsi0yI0E4GnKTFFY5lwhuXRKcVkoVzJZxZ5zxaqCC2sFUyWabEouxrtb37_tbBj0pt_5Lr7UKQeZI8-jlilJx1Tp-xC8dXrrm1fj9xpBf-nToz4d9elvfRojlI1QiOFubf3v6X-oT_W7cjw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yi, Wanli</creator><creator>She, Xuefeng</creator><creator>Zhang, Huai</creator><creator>An, Zhenlong</creator><creator>Wang, Jingsong</creator><creator>Xue, Qingguo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210401</creationdate><title>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</title><author>Yi, Wanli ; She, Xuefeng ; Zhang, Huai ; An, Zhenlong ; Wang, Jingsong ; Xue, Qingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a70dc46e1082b7a8005224abbe4ffb858f9958b9fc48d9fc7594db56ee649c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Earth</topic><topic>Fluorite</topic><topic>Growth models</topic><topic>Iron ores</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Original Research Article</topic><topic>Pulverized coal</topic><topic>Slag</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Wanli</creatorcontrib><creatorcontrib>She, Xuefeng</creatorcontrib><creatorcontrib>Zhang, Huai</creatorcontrib><creatorcontrib>An, Zhenlong</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Xue, Qingguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Wanli</au><au>She, Xuefeng</au><au>Zhang, Huai</au><au>An, Zhenlong</au><au>Wang, Jingsong</au><au>Xue, Qingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>52</volume><issue>2</issue><spage>1095</spage><epage>1105</epage><pages>1095-1105</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Isothermal reduction experiments at 1400 °C, which used carbon-bearing pellets mainly made from Bayan Obo complex iron ore and pulverized coal, could effectively separate rare earth (RE) slag and iron. Different instruments were used to study the precipitation of RE slag and the growth behavior of the RE phase in RE slag during the process of cooling from 1400 °C. The experimental results show the presence of three main phases in the RE slag—the RE phase (Ca, Ce, La)
5
(SiO
4
)
6
F, cuspidine (Ca
4
Si
2
O
7
F
2
), and fluorite (CaF
2
), which precipitated at 1352 °C, 1218 °C, and 1045 °C, respectively. The RE phase grew along a specific growth track and finally manifested with a hollow hexagon morphology. The edge nucleation layer-by-layer growth model was applied to explain the formation of the hollow crystal structure. Further, the growth kinetics of the RE phase formation from molten slag were also described.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02081-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-04, Vol.52 (2), p.1095-1105 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_journals_2508715766 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Crystal growth Crystal structure Crystallization Earth Fluorite Growth models Iron ores Materials Science Metallic Materials Morphology Nanotechnology Nucleation Original Research Article Pulverized coal Slag Structural Materials Surfaces and Interfaces Thin Films |
title | Precipitation of Rare Earth Slag and the Crystallization Behavior of Rare Earth Phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20of%20Rare%20Earth%20Slag%20and%20the%20Crystallization%20Behavior%20of%20Rare%20Earth%20Phase&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Yi,%20Wanli&rft.date=2021-04-01&rft.volume=52&rft.issue=2&rft.spage=1095&rft.epage=1105&rft.pages=1095-1105&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02081-1&rft_dat=%3Cproquest_cross%3E2508715766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508715766&rft_id=info:pmid/&rfr_iscdi=true |