Particle clustering dynamics in dense-phase particle-fluid slurries

This study investigates clustering mechanisms during flow and transport of dense-phase particle–fluid slurry, evaluating the slurry’s complex internal composition effects on particle conveyance. Dense-phase particle–fluid flow and transport are affected by frequent particle–particle collisions, lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2021-04, Vol.132, p.104038, Article 104038
Hauptverfasser: Yamashiro, Brian D., Tomac, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104038
container_title Computers and geotechnics
container_volume 132
creator Yamashiro, Brian D.
Tomac, Ingrid
description This study investigates clustering mechanisms during flow and transport of dense-phase particle–fluid slurry, evaluating the slurry’s complex internal composition effects on particle conveyance. Dense-phase particle–fluid flow and transport are affected by frequent particle–particle collisions, leading to development of particle clusters. Particle conveyance and irregularities of particle placement in fractures due to clustering influence is a topic of interest for proppant injection used during hydraulic fracturing for enhancement of geothermal and hydrocarbon reservoirs. A micromechanical (particle-level) approach using the Discrete Element Method coupled with computational fluid mechanics (DEM-CFD) reveals interesting underlying mechanisms which govern overall slurry conveyance. In this study, qualitative clustering shapes and quantitative clustering characteristics are related to variances in the Durand-Froude number and injected particle volumetric concentrations. Furthermore, this study compares coupled DEM-CFD model results with simplified particle transport evaluations used in some hydraulic fracture simulation software. Results show that particle deposition dynamics do not fully follow predictions based on simplified evaluations at higher injection volumetric concentrations. In most of these cases, conveying particle suspension concentration is non-linear in behavior that differs from the anticipated particle behavior described by simplified evaluations. Overall, this work improves understanding of flowing particle slurry structure and slurry clustering influence on flow and transport.
doi_str_mv 10.1016/j.compgeo.2021.104038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508595610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X21000410</els_id><sourcerecordid>2508595610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-467ec1f981216684179dcdc15ddcfb78326a934553fcd494f875806df98ccc343</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHguWvSfDQ9iSx-wYIeFLyFOpmsKd22Jq2w_94s3bungeF93mEeQq4ZXTHK1G2zgn43bLFfFbRgaSco1ydkwXTJ81JxfkoWtFAq57L4PCcXMTY0cZWuFmT9VofRQ4sZtFMcMfhum9l9V-88xMx3mcUuYj581xGz4ZjNXTt5m8V2CsFjvCRnrm4jXh3nknw8Pryvn_PN69PL-n6Tg5B0zIUqEZirNCuYUlqwsrJggUlrwX2VmheqrriQkjuwohJOl1JTZRMBAFzwJbmZe4fQ_0wYR9P0U-jSSVNIqmUlFaMpJecUhD7GgM4Mwe_qsDeMmoMv05ijL3PwZWZfibubOUwv_HoMJoLHDtD6gDAa2_t_Gv4ATcN2QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508595610</pqid></control><display><type>article</type><title>Particle clustering dynamics in dense-phase particle-fluid slurries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yamashiro, Brian D. ; Tomac, Ingrid</creator><creatorcontrib>Yamashiro, Brian D. ; Tomac, Ingrid</creatorcontrib><description>This study investigates clustering mechanisms during flow and transport of dense-phase particle–fluid slurry, evaluating the slurry’s complex internal composition effects on particle conveyance. Dense-phase particle–fluid flow and transport are affected by frequent particle–particle collisions, leading to development of particle clusters. Particle conveyance and irregularities of particle placement in fractures due to clustering influence is a topic of interest for proppant injection used during hydraulic fracturing for enhancement of geothermal and hydrocarbon reservoirs. A micromechanical (particle-level) approach using the Discrete Element Method coupled with computational fluid mechanics (DEM-CFD) reveals interesting underlying mechanisms which govern overall slurry conveyance. In this study, qualitative clustering shapes and quantitative clustering characteristics are related to variances in the Durand-Froude number and injected particle volumetric concentrations. Furthermore, this study compares coupled DEM-CFD model results with simplified particle transport evaluations used in some hydraulic fracture simulation software. Results show that particle deposition dynamics do not fully follow predictions based on simplified evaluations at higher injection volumetric concentrations. In most of these cases, conveying particle suspension concentration is non-linear in behavior that differs from the anticipated particle behavior described by simplified evaluations. Overall, this work improves understanding of flowing particle slurry structure and slurry clustering influence on flow and transport.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2021.104038</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Clustering ; Composition effects ; Computational fluid dynamics ; Computer applications ; Conveying ; DEM-CFD ; Dense phase particle–fluid slurry ; Discrete element method ; Dynamics ; Fluid flow ; Fluid mechanics ; Froude number ; Georeservoirs ; Hydraulic fracturing ; Injection ; Particle clustering ; Particle collisions ; Particle deposition ; Proppant flow and transport ; Proppant settling ; Sediment transport ; Slurries</subject><ispartof>Computers and geotechnics, 2021-04, Vol.132, p.104038, Article 104038</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-467ec1f981216684179dcdc15ddcfb78326a934553fcd494f875806df98ccc343</citedby><cites>FETCH-LOGICAL-c450t-467ec1f981216684179dcdc15ddcfb78326a934553fcd494f875806df98ccc343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2021.104038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yamashiro, Brian D.</creatorcontrib><creatorcontrib>Tomac, Ingrid</creatorcontrib><title>Particle clustering dynamics in dense-phase particle-fluid slurries</title><title>Computers and geotechnics</title><description>This study investigates clustering mechanisms during flow and transport of dense-phase particle–fluid slurry, evaluating the slurry’s complex internal composition effects on particle conveyance. Dense-phase particle–fluid flow and transport are affected by frequent particle–particle collisions, leading to development of particle clusters. Particle conveyance and irregularities of particle placement in fractures due to clustering influence is a topic of interest for proppant injection used during hydraulic fracturing for enhancement of geothermal and hydrocarbon reservoirs. A micromechanical (particle-level) approach using the Discrete Element Method coupled with computational fluid mechanics (DEM-CFD) reveals interesting underlying mechanisms which govern overall slurry conveyance. In this study, qualitative clustering shapes and quantitative clustering characteristics are related to variances in the Durand-Froude number and injected particle volumetric concentrations. Furthermore, this study compares coupled DEM-CFD model results with simplified particle transport evaluations used in some hydraulic fracture simulation software. Results show that particle deposition dynamics do not fully follow predictions based on simplified evaluations at higher injection volumetric concentrations. In most of these cases, conveying particle suspension concentration is non-linear in behavior that differs from the anticipated particle behavior described by simplified evaluations. Overall, this work improves understanding of flowing particle slurry structure and slurry clustering influence on flow and transport.</description><subject>Clustering</subject><subject>Composition effects</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Conveying</subject><subject>DEM-CFD</subject><subject>Dense phase particle–fluid slurry</subject><subject>Discrete element method</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Froude number</subject><subject>Georeservoirs</subject><subject>Hydraulic fracturing</subject><subject>Injection</subject><subject>Particle clustering</subject><subject>Particle collisions</subject><subject>Particle deposition</subject><subject>Proppant flow and transport</subject><subject>Proppant settling</subject><subject>Sediment transport</subject><subject>Slurries</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKHguWvSfDQ9iSx-wYIeFLyFOpmsKd22Jq2w_94s3bungeF93mEeQq4ZXTHK1G2zgn43bLFfFbRgaSco1ydkwXTJ81JxfkoWtFAq57L4PCcXMTY0cZWuFmT9VofRQ4sZtFMcMfhum9l9V-88xMx3mcUuYj581xGz4ZjNXTt5m8V2CsFjvCRnrm4jXh3nknw8Pryvn_PN69PL-n6Tg5B0zIUqEZirNCuYUlqwsrJggUlrwX2VmheqrriQkjuwohJOl1JTZRMBAFzwJbmZe4fQ_0wYR9P0U-jSSVNIqmUlFaMpJecUhD7GgM4Mwe_qsDeMmoMv05ijL3PwZWZfibubOUwv_HoMJoLHDtD6gDAa2_t_Gv4ATcN2QA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Yamashiro, Brian D.</creator><creator>Tomac, Ingrid</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202104</creationdate><title>Particle clustering dynamics in dense-phase particle-fluid slurries</title><author>Yamashiro, Brian D. ; Tomac, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-467ec1f981216684179dcdc15ddcfb78326a934553fcd494f875806df98ccc343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Composition effects</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Conveying</topic><topic>DEM-CFD</topic><topic>Dense phase particle–fluid slurry</topic><topic>Discrete element method</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Froude number</topic><topic>Georeservoirs</topic><topic>Hydraulic fracturing</topic><topic>Injection</topic><topic>Particle clustering</topic><topic>Particle collisions</topic><topic>Particle deposition</topic><topic>Proppant flow and transport</topic><topic>Proppant settling</topic><topic>Sediment transport</topic><topic>Slurries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashiro, Brian D.</creatorcontrib><creatorcontrib>Tomac, Ingrid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashiro, Brian D.</au><au>Tomac, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle clustering dynamics in dense-phase particle-fluid slurries</atitle><jtitle>Computers and geotechnics</jtitle><date>2021-04</date><risdate>2021</risdate><volume>132</volume><spage>104038</spage><pages>104038-</pages><artnum>104038</artnum><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>This study investigates clustering mechanisms during flow and transport of dense-phase particle–fluid slurry, evaluating the slurry’s complex internal composition effects on particle conveyance. Dense-phase particle–fluid flow and transport are affected by frequent particle–particle collisions, leading to development of particle clusters. Particle conveyance and irregularities of particle placement in fractures due to clustering influence is a topic of interest for proppant injection used during hydraulic fracturing for enhancement of geothermal and hydrocarbon reservoirs. A micromechanical (particle-level) approach using the Discrete Element Method coupled with computational fluid mechanics (DEM-CFD) reveals interesting underlying mechanisms which govern overall slurry conveyance. In this study, qualitative clustering shapes and quantitative clustering characteristics are related to variances in the Durand-Froude number and injected particle volumetric concentrations. Furthermore, this study compares coupled DEM-CFD model results with simplified particle transport evaluations used in some hydraulic fracture simulation software. Results show that particle deposition dynamics do not fully follow predictions based on simplified evaluations at higher injection volumetric concentrations. In most of these cases, conveying particle suspension concentration is non-linear in behavior that differs from the anticipated particle behavior described by simplified evaluations. Overall, this work improves understanding of flowing particle slurry structure and slurry clustering influence on flow and transport.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2021.104038</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2021-04, Vol.132, p.104038, Article 104038
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_journals_2508595610
source Access via ScienceDirect (Elsevier)
subjects Clustering
Composition effects
Computational fluid dynamics
Computer applications
Conveying
DEM-CFD
Dense phase particle–fluid slurry
Discrete element method
Dynamics
Fluid flow
Fluid mechanics
Froude number
Georeservoirs
Hydraulic fracturing
Injection
Particle clustering
Particle collisions
Particle deposition
Proppant flow and transport
Proppant settling
Sediment transport
Slurries
title Particle clustering dynamics in dense-phase particle-fluid slurries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20clustering%20dynamics%20in%20dense-phase%20particle-fluid%20slurries&rft.jtitle=Computers%20and%20geotechnics&rft.au=Yamashiro,%20Brian%20D.&rft.date=2021-04&rft.volume=132&rft.spage=104038&rft.pages=104038-&rft.artnum=104038&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2021.104038&rft_dat=%3Cproquest_cross%3E2508595610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508595610&rft_id=info:pmid/&rft_els_id=S0266352X21000410&rfr_iscdi=true