Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis

•Hierarchical flower-like Ni-doped Co3O4 was controllable synthesized via one-step coprecipitation method.•The effect of ethanol/water ratio on samples were studied systematically via a series of solvent-dependent experiments.•The S3 gas sensor exhibited excellent gas sensing and anti-humidity perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2021-02, Vol.328, p.129028, Article 129028
Hauptverfasser: Cheng, Pengfei, Dang, Fan, Wang, Yinglin, Gao, Jianning, Xu, Luping, Wang, Chen, Lv, Li, Li, Xu, Zhang, Bao, Liu, Baijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 129028
container_title Sensors and actuators. B, Chemical
container_volume 328
creator Cheng, Pengfei
Dang, Fan
Wang, Yinglin
Gao, Jianning
Xu, Luping
Wang, Chen
Lv, Li
Li, Xu
Zhang, Bao
Liu, Baijun
description •Hierarchical flower-like Ni-doped Co3O4 was controllable synthesized via one-step coprecipitation method.•The effect of ethanol/water ratio on samples were studied systematically via a series of solvent-dependent experiments.•The S3 gas sensor exhibited excellent gas sensing and anti-humidity performance at a low temperature (165 °C). In this work, hierarchical flower-like Ni-doped Co3O4 was synthesized via a facile one-step coprecipitation method. In the synthesis process, a series of solvent-dependent experiments were carried out to investigate the effect of ethanol/water ratio (R-E/W) on samples. With the increasing ethanol/water ratio, the doping concentration of Ni2+ increased and the microstructure evolved from micro-leaves to micro-flowers. Additionally, gas sensors based on prepared materials were fabricated to evaluate their gas sensing properties. The comparative analysis illustrated that the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers (R-E/W = 3/30) presented the highest response (8.34) to 100 ppm n-butanol at low optimum temperature (165 °C), with a response/recovery time of 59/63 s, and it also exhibited excellent anti-humidity properties and long-term stability. The unique hierarchical flower-like microstructure and the optimized parameters (catalytic sites, carrier concentration, ratio of Co2+, oxygen component) caused by the doping of Ni were responsible for the improved gas sensing performance. Therefore, this work presented a simple solvent-dependent route to controllably synthesize Ni-doped Co3O4 sensing material, and the excellent gas sensing properties of the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers revealed a great application prospect in detecting n-butanol.
doi_str_mv 10.1016/j.snb.2020.129028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508593757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400520313757</els_id><sourcerecordid>2508593757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c968b42af02d7bf00ced61429c8530647e79d16cde6efa33697eb4cbe843f40c3</originalsourceid><addsrcrecordid>eNp9kMFuFDEMhiMEEkvhAbhF4pzFk2QmM3BCK9oiVfQC5yiTeNQs02SIs636BLw2qZYzJ_-2_t-2Psbed7DvoBs-HveU5r0E2Xo5gRxfsF03GiUUGPOS7WCSvdAA_Wv2hugIAFoNsGN_rhxxwkS58JofXQnEk5hP1aW8clf5mh95xfsNi6ungjxgRV9jTp_4dWzD4u-idytfmhGLWOMv5N-jCHnDwA9Z3Wo-O2o6J055fcBURcANU2iK01Oqd0iR3rJXi1sJ3_2rF-zn5dcfh2txc3v17fDlRngl-yr8NIyzlm4BGcy8AHgMQ6fl5MdewaANmil0gw844OKUGiaDs_YzjlotGry6YB_Oe7eSf5-Qqj3mU0ntpJU9jP2kTG-aqzu7fMlEBRe7lXjvypPtwD7ztkfbeNtn3vbMu2U-nzPY3n9oaCz5iKk9GEsjZkOO_0n_BTQpimc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508593757</pqid></control><display><type>article</type><title>Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Pengfei ; Dang, Fan ; Wang, Yinglin ; Gao, Jianning ; Xu, Luping ; Wang, Chen ; Lv, Li ; Li, Xu ; Zhang, Bao ; Liu, Baijun</creator><creatorcontrib>Cheng, Pengfei ; Dang, Fan ; Wang, Yinglin ; Gao, Jianning ; Xu, Luping ; Wang, Chen ; Lv, Li ; Li, Xu ; Zhang, Bao ; Liu, Baijun</creatorcontrib><description>•Hierarchical flower-like Ni-doped Co3O4 was controllable synthesized via one-step coprecipitation method.•The effect of ethanol/water ratio on samples were studied systematically via a series of solvent-dependent experiments.•The S3 gas sensor exhibited excellent gas sensing and anti-humidity performance at a low temperature (165 °C). In this work, hierarchical flower-like Ni-doped Co3O4 was synthesized via a facile one-step coprecipitation method. In the synthesis process, a series of solvent-dependent experiments were carried out to investigate the effect of ethanol/water ratio (R-E/W) on samples. With the increasing ethanol/water ratio, the doping concentration of Ni2+ increased and the microstructure evolved from micro-leaves to micro-flowers. Additionally, gas sensors based on prepared materials were fabricated to evaluate their gas sensing properties. The comparative analysis illustrated that the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers (R-E/W = 3/30) presented the highest response (8.34) to 100 ppm n-butanol at low optimum temperature (165 °C), with a response/recovery time of 59/63 s, and it also exhibited excellent anti-humidity properties and long-term stability. The unique hierarchical flower-like microstructure and the optimized parameters (catalytic sites, carrier concentration, ratio of Co2+, oxygen component) caused by the doping of Ni were responsible for the improved gas sensing performance. Therefore, this work presented a simple solvent-dependent route to controllably synthesize Ni-doped Co3O4 sensing material, and the excellent gas sensing properties of the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers revealed a great application prospect in detecting n-butanol.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.129028</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anti-humidity ; Butanol ; Carrier density ; Cobalt oxides ; Doping ; Ethanol ; Flowers ; Gas sensor ; Gas sensors ; Low optimum temperature ; Low temperature ; Microstructure ; n-Butanol ; Ni-doped Co3O4 ; Nickel ; Properties (attributes) ; Recovery time ; Sensors ; Solvent-dependent ; Solvents ; Synthesis</subject><ispartof>Sensors and actuators. B, Chemical, 2021-02, Vol.328, p.129028, Article 129028</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c968b42af02d7bf00ced61429c8530647e79d16cde6efa33697eb4cbe843f40c3</citedby><cites>FETCH-LOGICAL-c325t-c968b42af02d7bf00ced61429c8530647e79d16cde6efa33697eb4cbe843f40c3</cites><orcidid>0000-0002-7467-3107 ; 0000-0002-1626-417X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400520313757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cheng, Pengfei</creatorcontrib><creatorcontrib>Dang, Fan</creatorcontrib><creatorcontrib>Wang, Yinglin</creatorcontrib><creatorcontrib>Gao, Jianning</creatorcontrib><creatorcontrib>Xu, Luping</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Lv, Li</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Liu, Baijun</creatorcontrib><title>Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis</title><title>Sensors and actuators. B, Chemical</title><description>•Hierarchical flower-like Ni-doped Co3O4 was controllable synthesized via one-step coprecipitation method.•The effect of ethanol/water ratio on samples were studied systematically via a series of solvent-dependent experiments.•The S3 gas sensor exhibited excellent gas sensing and anti-humidity performance at a low temperature (165 °C). In this work, hierarchical flower-like Ni-doped Co3O4 was synthesized via a facile one-step coprecipitation method. In the synthesis process, a series of solvent-dependent experiments were carried out to investigate the effect of ethanol/water ratio (R-E/W) on samples. With the increasing ethanol/water ratio, the doping concentration of Ni2+ increased and the microstructure evolved from micro-leaves to micro-flowers. Additionally, gas sensors based on prepared materials were fabricated to evaluate their gas sensing properties. The comparative analysis illustrated that the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers (R-E/W = 3/30) presented the highest response (8.34) to 100 ppm n-butanol at low optimum temperature (165 °C), with a response/recovery time of 59/63 s, and it also exhibited excellent anti-humidity properties and long-term stability. The unique hierarchical flower-like microstructure and the optimized parameters (catalytic sites, carrier concentration, ratio of Co2+, oxygen component) caused by the doping of Ni were responsible for the improved gas sensing performance. Therefore, this work presented a simple solvent-dependent route to controllably synthesize Ni-doped Co3O4 sensing material, and the excellent gas sensing properties of the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers revealed a great application prospect in detecting n-butanol.</description><subject>Anti-humidity</subject><subject>Butanol</subject><subject>Carrier density</subject><subject>Cobalt oxides</subject><subject>Doping</subject><subject>Ethanol</subject><subject>Flowers</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>Low optimum temperature</subject><subject>Low temperature</subject><subject>Microstructure</subject><subject>n-Butanol</subject><subject>Ni-doped Co3O4</subject><subject>Nickel</subject><subject>Properties (attributes)</subject><subject>Recovery time</subject><subject>Sensors</subject><subject>Solvent-dependent</subject><subject>Solvents</subject><subject>Synthesis</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuFDEMhiMEEkvhAbhF4pzFk2QmM3BCK9oiVfQC5yiTeNQs02SIs636BLw2qZYzJ_-2_t-2Psbed7DvoBs-HveU5r0E2Xo5gRxfsF03GiUUGPOS7WCSvdAA_Wv2hugIAFoNsGN_rhxxwkS58JofXQnEk5hP1aW8clf5mh95xfsNi6ungjxgRV9jTp_4dWzD4u-idytfmhGLWOMv5N-jCHnDwA9Z3Wo-O2o6J055fcBURcANU2iK01Oqd0iR3rJXi1sJ3_2rF-zn5dcfh2txc3v17fDlRngl-yr8NIyzlm4BGcy8AHgMQ6fl5MdewaANmil0gw844OKUGiaDs_YzjlotGry6YB_Oe7eSf5-Qqj3mU0ntpJU9jP2kTG-aqzu7fMlEBRe7lXjvypPtwD7ztkfbeNtn3vbMu2U-nzPY3n9oaCz5iKk9GEsjZkOO_0n_BTQpimc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cheng, Pengfei</creator><creator>Dang, Fan</creator><creator>Wang, Yinglin</creator><creator>Gao, Jianning</creator><creator>Xu, Luping</creator><creator>Wang, Chen</creator><creator>Lv, Li</creator><creator>Li, Xu</creator><creator>Zhang, Bao</creator><creator>Liu, Baijun</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7467-3107</orcidid><orcidid>https://orcid.org/0000-0002-1626-417X</orcidid></search><sort><creationdate>20210201</creationdate><title>Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis</title><author>Cheng, Pengfei ; Dang, Fan ; Wang, Yinglin ; Gao, Jianning ; Xu, Luping ; Wang, Chen ; Lv, Li ; Li, Xu ; Zhang, Bao ; Liu, Baijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c968b42af02d7bf00ced61429c8530647e79d16cde6efa33697eb4cbe843f40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-humidity</topic><topic>Butanol</topic><topic>Carrier density</topic><topic>Cobalt oxides</topic><topic>Doping</topic><topic>Ethanol</topic><topic>Flowers</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>Low optimum temperature</topic><topic>Low temperature</topic><topic>Microstructure</topic><topic>n-Butanol</topic><topic>Ni-doped Co3O4</topic><topic>Nickel</topic><topic>Properties (attributes)</topic><topic>Recovery time</topic><topic>Sensors</topic><topic>Solvent-dependent</topic><topic>Solvents</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Pengfei</creatorcontrib><creatorcontrib>Dang, Fan</creatorcontrib><creatorcontrib>Wang, Yinglin</creatorcontrib><creatorcontrib>Gao, Jianning</creatorcontrib><creatorcontrib>Xu, Luping</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Lv, Li</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Liu, Baijun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Pengfei</au><au>Dang, Fan</au><au>Wang, Yinglin</au><au>Gao, Jianning</au><au>Xu, Luping</au><au>Wang, Chen</au><au>Lv, Li</au><au>Li, Xu</au><au>Zhang, Bao</au><au>Liu, Baijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>328</volume><spage>129028</spage><pages>129028-</pages><artnum>129028</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Hierarchical flower-like Ni-doped Co3O4 was controllable synthesized via one-step coprecipitation method.•The effect of ethanol/water ratio on samples were studied systematically via a series of solvent-dependent experiments.•The S3 gas sensor exhibited excellent gas sensing and anti-humidity performance at a low temperature (165 °C). In this work, hierarchical flower-like Ni-doped Co3O4 was synthesized via a facile one-step coprecipitation method. In the synthesis process, a series of solvent-dependent experiments were carried out to investigate the effect of ethanol/water ratio (R-E/W) on samples. With the increasing ethanol/water ratio, the doping concentration of Ni2+ increased and the microstructure evolved from micro-leaves to micro-flowers. Additionally, gas sensors based on prepared materials were fabricated to evaluate their gas sensing properties. The comparative analysis illustrated that the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers (R-E/W = 3/30) presented the highest response (8.34) to 100 ppm n-butanol at low optimum temperature (165 °C), with a response/recovery time of 59/63 s, and it also exhibited excellent anti-humidity properties and long-term stability. The unique hierarchical flower-like microstructure and the optimized parameters (catalytic sites, carrier concentration, ratio of Co2+, oxygen component) caused by the doping of Ni were responsible for the improved gas sensing performance. Therefore, this work presented a simple solvent-dependent route to controllably synthesize Ni-doped Co3O4 sensing material, and the excellent gas sensing properties of the sensor based on 5.3 mol% Ni-doped Co3O4 microflowers revealed a great application prospect in detecting n-butanol.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.129028</doi><orcidid>https://orcid.org/0000-0002-7467-3107</orcidid><orcidid>https://orcid.org/0000-0002-1626-417X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2021-02, Vol.328, p.129028, Article 129028
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2508593757
source Elsevier ScienceDirect Journals
subjects Anti-humidity
Butanol
Carrier density
Cobalt oxides
Doping
Ethanol
Flowers
Gas sensor
Gas sensors
Low optimum temperature
Low temperature
Microstructure
n-Butanol
Ni-doped Co3O4
Nickel
Properties (attributes)
Recovery time
Sensors
Solvent-dependent
Solvents
Synthesis
title Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20sensor%20towards%20n-butanol%20at%20low%20temperature%20detection:%20Hierarchical%20flower-like%20Ni-doped%20Co3O4%20based%20on%20solvent-dependent%20synthesis&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Cheng,%20Pengfei&rft.date=2021-02-01&rft.volume=328&rft.spage=129028&rft.pages=129028-&rft.artnum=129028&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.129028&rft_dat=%3Cproquest_cross%3E2508593757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508593757&rft_id=info:pmid/&rft_els_id=S0925400520313757&rfr_iscdi=true