Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations

•Mesoscale modeling of rock with multiple non-persistent joint sets.•Themomechanical coupling for shock loading.•Inuences of persistency and angular deviation on average strength.•Inuence of uid pressure on average strength. Recently a mesoscale model was developed that includes thermomechanically c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2021-05, Vol.151, p.103747, Article 103747
Hauptverfasser: Vorobiev, O.Y., Rubin, M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103747
container_title International journal of impact engineering
container_volume 151
creator Vorobiev, O.Y.
Rubin, M.B.
description •Mesoscale modeling of rock with multiple non-persistent joint sets.•Themomechanical coupling for shock loading.•Inuences of persistency and angular deviation on average strength.•Inuence of uid pressure on average strength. Recently a mesoscale model was developed that includes thermomechanically consistent constitutive equations with dissipation due to porous compaction, inelastic distortional deformation rate, and slipping on persistent dry joint surfaces. In this Part I of a two-part paper, enhancements of the mesoscale model are described which include: normal compliance with hysteresis, non-persistent joints with finite area, joint sets with angular deviation, and the weakening effect of fluid pressure in the joints. Examples study the influences of these effects on average strength. These computationally expensive simulations are used to inspire functional forms in a continuum model, described in Part II, which is needed for large scale simulations of real applications.
doi_str_mv 10.1016/j.ijimpeng.2020.103747
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508593666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X20308174</els_id><sourcerecordid>2508593666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5b33d9bdd89486b95c6ad8c2c3b6c0328c4faaed3525bc2fb4e89045a926fb853</originalsourceid><addsrcrecordid>eNqFkM9K5TAUxoOM4B31FSQw617TpknTWc0gM6Og6ELBXUiTU01tm05OqrjSh_AJfRJ7uTNrVwc-vj-cHyFHOVvnLJfH3dp3fphgvFsXrNiIvCqrHbLKVVVnXLD6C1mxipdZVfLbPfIVsWMsr5hgK_JyERz0fryj6R6oex7N4C2NgFMYEWhoaQz2gQ4GEZA--XRPh7lPfuqB2jBMvTdjom0_e0fRpDmaBI52wS8qQsL317crExM9-04vAANaswTRLx0m-WXigOy2pkc4_Hf3yc3vX9cnp9n55Z-zk5_nmeVKpUw0nLu6cU7VpZJNLaw0TtnC8kZaxgtly9YYcFwUorFF25SgalYKUxeybZTg--TbtneK4e8MmHQX5jguk7oQTImaSykXl9y6bAyIEVo9RT-Y-Kxzpjewdaf_w9Yb2HoLewn-2AZh-eHRQ9RoPYwWnI9gk3bBf1bxAThHj88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508593666</pqid></control><display><type>article</type><title>Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Vorobiev, O.Y. ; Rubin, M.B.</creator><creatorcontrib>Vorobiev, O.Y. ; Rubin, M.B.</creatorcontrib><description>•Mesoscale modeling of rock with multiple non-persistent joint sets.•Themomechanical coupling for shock loading.•Inuences of persistency and angular deviation on average strength.•Inuence of uid pressure on average strength. Recently a mesoscale model was developed that includes thermomechanically consistent constitutive equations with dissipation due to porous compaction, inelastic distortional deformation rate, and slipping on persistent dry joint surfaces. In this Part I of a two-part paper, enhancements of the mesoscale model are described which include: normal compliance with hysteresis, non-persistent joints with finite area, joint sets with angular deviation, and the weakening effect of fluid pressure in the joints. Examples study the influences of these effects on average strength. These computationally expensive simulations are used to inspire functional forms in a continuum model, described in Part II, which is needed for large scale simulations of real applications.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2020.103747</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Angular deviation ; Constitutive equations ; Constitutive relationships ; Continuum modeling ; Dynamic response ; Fluid pressure ; Joint persistency ; Jointed rock ; Mesoscale phenomena ; Mesoscale simulations ; Pressure effects ; Simulation ; Thermodynamically consistent model</subject><ispartof>International journal of impact engineering, 2021-05, Vol.151, p.103747, Article 103747</ispartof><rights>2020</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5b33d9bdd89486b95c6ad8c2c3b6c0328c4faaed3525bc2fb4e89045a926fb853</citedby><cites>FETCH-LOGICAL-c388t-5b33d9bdd89486b95c6ad8c2c3b6c0328c4faaed3525bc2fb4e89045a926fb853</cites><orcidid>0000-0002-2916-5066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijimpeng.2020.103747$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Vorobiev, O.Y.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><title>Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations</title><title>International journal of impact engineering</title><description>•Mesoscale modeling of rock with multiple non-persistent joint sets.•Themomechanical coupling for shock loading.•Inuences of persistency and angular deviation on average strength.•Inuence of uid pressure on average strength. Recently a mesoscale model was developed that includes thermomechanically consistent constitutive equations with dissipation due to porous compaction, inelastic distortional deformation rate, and slipping on persistent dry joint surfaces. In this Part I of a two-part paper, enhancements of the mesoscale model are described which include: normal compliance with hysteresis, non-persistent joints with finite area, joint sets with angular deviation, and the weakening effect of fluid pressure in the joints. Examples study the influences of these effects on average strength. These computationally expensive simulations are used to inspire functional forms in a continuum model, described in Part II, which is needed for large scale simulations of real applications.</description><subject>Angular deviation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Continuum modeling</subject><subject>Dynamic response</subject><subject>Fluid pressure</subject><subject>Joint persistency</subject><subject>Jointed rock</subject><subject>Mesoscale phenomena</subject><subject>Mesoscale simulations</subject><subject>Pressure effects</subject><subject>Simulation</subject><subject>Thermodynamically consistent model</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9K5TAUxoOM4B31FSQw617TpknTWc0gM6Og6ELBXUiTU01tm05OqrjSh_AJfRJ7uTNrVwc-vj-cHyFHOVvnLJfH3dp3fphgvFsXrNiIvCqrHbLKVVVnXLD6C1mxipdZVfLbPfIVsWMsr5hgK_JyERz0fryj6R6oex7N4C2NgFMYEWhoaQz2gQ4GEZA--XRPh7lPfuqB2jBMvTdjom0_e0fRpDmaBI52wS8qQsL317crExM9-04vAANaswTRLx0m-WXigOy2pkc4_Hf3yc3vX9cnp9n55Z-zk5_nmeVKpUw0nLu6cU7VpZJNLaw0TtnC8kZaxgtly9YYcFwUorFF25SgalYKUxeybZTg--TbtneK4e8MmHQX5jguk7oQTImaSykXl9y6bAyIEVo9RT-Y-Kxzpjewdaf_w9Yb2HoLewn-2AZh-eHRQ9RoPYwWnI9gk3bBf1bxAThHj88</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Vorobiev, O.Y.</creator><creator>Rubin, M.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2916-5066</orcidid></search><sort><creationdate>202105</creationdate><title>Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations</title><author>Vorobiev, O.Y. ; Rubin, M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5b33d9bdd89486b95c6ad8c2c3b6c0328c4faaed3525bc2fb4e89045a926fb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular deviation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Continuum modeling</topic><topic>Dynamic response</topic><topic>Fluid pressure</topic><topic>Joint persistency</topic><topic>Jointed rock</topic><topic>Mesoscale phenomena</topic><topic>Mesoscale simulations</topic><topic>Pressure effects</topic><topic>Simulation</topic><topic>Thermodynamically consistent model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorobiev, O.Y.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorobiev, O.Y.</au><au>Rubin, M.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations</atitle><jtitle>International journal of impact engineering</jtitle><date>2021-05</date><risdate>2021</risdate><volume>151</volume><spage>103747</spage><pages>103747-</pages><artnum>103747</artnum><issn>0734-743X</issn><eissn>1879-3509</eissn><abstract>•Mesoscale modeling of rock with multiple non-persistent joint sets.•Themomechanical coupling for shock loading.•Inuences of persistency and angular deviation on average strength.•Inuence of uid pressure on average strength. Recently a mesoscale model was developed that includes thermomechanically consistent constitutive equations with dissipation due to porous compaction, inelastic distortional deformation rate, and slipping on persistent dry joint surfaces. In this Part I of a two-part paper, enhancements of the mesoscale model are described which include: normal compliance with hysteresis, non-persistent joints with finite area, joint sets with angular deviation, and the weakening effect of fluid pressure in the joints. Examples study the influences of these effects on average strength. These computationally expensive simulations are used to inspire functional forms in a continuum model, described in Part II, which is needed for large scale simulations of real applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2020.103747</doi><orcidid>https://orcid.org/0000-0002-2916-5066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2021-05, Vol.151, p.103747, Article 103747
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_journals_2508593666
source Access via ScienceDirect (Elsevier)
subjects Angular deviation
Constitutive equations
Constitutive relationships
Continuum modeling
Dynamic response
Fluid pressure
Joint persistency
Jointed rock
Mesoscale phenomena
Mesoscale simulations
Pressure effects
Simulation
Thermodynamically consistent model
title Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20dynamic%20response%20of%20rock%20masses%20with%20multiple%20compliant%20fluid%20saturated%20joint%20sets%E2%80%94Part%20I:%20Mesoscale%20simulations&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Vorobiev,%20O.Y.&rft.date=2021-05&rft.volume=151&rft.spage=103747&rft.pages=103747-&rft.artnum=103747&rft.issn=0734-743X&rft.eissn=1879-3509&rft_id=info:doi/10.1016/j.ijimpeng.2020.103747&rft_dat=%3Cproquest_cross%3E2508593666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508593666&rft_id=info:pmid/&rft_els_id=S0734743X20308174&rfr_iscdi=true