Boosting solar steam generation by photothermal enhanced polydopamine/wood composites
Solar steam generation is an emerging strategy for water desalination using renewable solar energy and seawater resources. In order to convert solar energy into heat for seawater evaporation, we developed a bi-layered structure composite for high-efficient solar evaporation based on photothermal-enh...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2021-03, Vol.217, p.123464, Article 123464 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123464 |
container_title | Polymer (Guilford) |
container_volume | 217 |
creator | Zou, Yuan Yang, Peng Yang, Lu Li, Ning Duan, Gaigai Liu, Xianhu Li, Yiwen |
description | Solar steam generation is an emerging strategy for water desalination using renewable solar energy and seawater resources. In order to convert solar energy into heat for seawater evaporation, we developed a bi-layered structure composite for high-efficient solar evaporation based on photothermal-enhanced arginine-doped polydopamine (APDA) and raw wood, which are biodegradable and sustainable. Note that the APDA coating layer exhibited improved optical absorption and photothermal conversion ability compared with conventional polydopamine (PDA) coating on account of the construction of donor-acceptor pairs within the APDA microstructure system. Density functional theory (DTF) calculation further confirmed that the energy bandgap of APDA could be narrowed though donor-acceptor microstructures and then enhanced the absorption spectrum. The resulting APDA-wood composite performed a solar vapor generation efficiency of ~77% on the condition of 1 sun illumination. The water evaporation process was quite stable over 100 cycles and the metal ions in seawater were almost eliminated after desalination. This amino acid-initiated cost-effective and facile coating method provided new opportunities to fabricate photothermal-enhanced coating materials for solar evaporation applications.
[Display omitted]
•APDA is prepared with improved light absorption and total photothermal effect.•Donor-acceptor microstructures within the APDA system could decrease the bandgap.•APDA-wood composite is fabricated for efficient solar steam generation. |
doi_str_mv | 10.1016/j.polymer.2021.123464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508591816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386121000872</els_id><sourcerecordid>2508591816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-274fbbacddd3c18a8fa9f098b383c28e996c1adc1d993234a0555524922cae443</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5AicU7qR5LaJwQVL6kSF3q2HHvTOkriYLug_nsSpXf2soedmdV8CN0TnBFMylWTDa49deAziinJCGV5mV-gBeFrllIqyCVaYMxoynhJrtFNCA3GmBY0X6Dds3Mh2n6fBNcqn4QIqkv20INX0bo-qU7JcHDRxQP4TrUJ9AfVazDJ9NO4QXW2h9WvcybRrhtcsBHCLbqqVRvg7ryXaPf68rV5T7efbx-bp22qc8xiStd5XVVKG2OYJlzxWokaC14xzjTlIESpiTKaGCHY2ErhYhyaC0q1gjxnS_Qw5w7efR8hRNm4o-_Hl5IWmBeCcFKOqmJWae9C8FDLwdtO-ZMkWE4EZSPPBOVEUM4ER9_j7IOxwo8dr0FbmMpbDzpK4-w_CX9sYH43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508591816</pqid></control><display><type>article</type><title>Boosting solar steam generation by photothermal enhanced polydopamine/wood composites</title><source>Elsevier ScienceDirect Journals</source><creator>Zou, Yuan ; Yang, Peng ; Yang, Lu ; Li, Ning ; Duan, Gaigai ; Liu, Xianhu ; Li, Yiwen</creator><creatorcontrib>Zou, Yuan ; Yang, Peng ; Yang, Lu ; Li, Ning ; Duan, Gaigai ; Liu, Xianhu ; Li, Yiwen</creatorcontrib><description>Solar steam generation is an emerging strategy for water desalination using renewable solar energy and seawater resources. In order to convert solar energy into heat for seawater evaporation, we developed a bi-layered structure composite for high-efficient solar evaporation based on photothermal-enhanced arginine-doped polydopamine (APDA) and raw wood, which are biodegradable and sustainable. Note that the APDA coating layer exhibited improved optical absorption and photothermal conversion ability compared with conventional polydopamine (PDA) coating on account of the construction of donor-acceptor pairs within the APDA microstructure system. Density functional theory (DTF) calculation further confirmed that the energy bandgap of APDA could be narrowed though donor-acceptor microstructures and then enhanced the absorption spectrum. The resulting APDA-wood composite performed a solar vapor generation efficiency of ~77% on the condition of 1 sun illumination. The water evaporation process was quite stable over 100 cycles and the metal ions in seawater were almost eliminated after desalination. This amino acid-initiated cost-effective and facile coating method provided new opportunities to fabricate photothermal-enhanced coating materials for solar evaporation applications.
[Display omitted]
•APDA is prepared with improved light absorption and total photothermal effect.•Donor-acceptor microstructures within the APDA system could decrease the bandgap.•APDA-wood composite is fabricated for efficient solar steam generation.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2021.123464</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorption ; Absorption spectra ; Amino acids ; Arginine ; Biodegradability ; Biodegradation ; Coating ; Coatings ; Construction standards ; Density functional theory ; Desalination ; Enhanced photothermal effect ; Evaporation ; Metal ions ; Photothermal conversion ; Polydopamine ; Protective coatings ; Seawater ; Solar energy ; Solar energy conversion ; Solar steam generation ; Steam generation ; Wood ; Wood composites</subject><ispartof>Polymer (Guilford), 2021-03, Vol.217, p.123464, Article 123464</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-274fbbacddd3c18a8fa9f098b383c28e996c1adc1d993234a0555524922cae443</citedby><cites>FETCH-LOGICAL-c403t-274fbbacddd3c18a8fa9f098b383c28e996c1adc1d993234a0555524922cae443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386121000872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zou, Yuan</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Li, Yiwen</creatorcontrib><title>Boosting solar steam generation by photothermal enhanced polydopamine/wood composites</title><title>Polymer (Guilford)</title><description>Solar steam generation is an emerging strategy for water desalination using renewable solar energy and seawater resources. In order to convert solar energy into heat for seawater evaporation, we developed a bi-layered structure composite for high-efficient solar evaporation based on photothermal-enhanced arginine-doped polydopamine (APDA) and raw wood, which are biodegradable and sustainable. Note that the APDA coating layer exhibited improved optical absorption and photothermal conversion ability compared with conventional polydopamine (PDA) coating on account of the construction of donor-acceptor pairs within the APDA microstructure system. Density functional theory (DTF) calculation further confirmed that the energy bandgap of APDA could be narrowed though donor-acceptor microstructures and then enhanced the absorption spectrum. The resulting APDA-wood composite performed a solar vapor generation efficiency of ~77% on the condition of 1 sun illumination. The water evaporation process was quite stable over 100 cycles and the metal ions in seawater were almost eliminated after desalination. This amino acid-initiated cost-effective and facile coating method provided new opportunities to fabricate photothermal-enhanced coating materials for solar evaporation applications.
[Display omitted]
•APDA is prepared with improved light absorption and total photothermal effect.•Donor-acceptor microstructures within the APDA system could decrease the bandgap.•APDA-wood composite is fabricated for efficient solar steam generation.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Amino acids</subject><subject>Arginine</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Coating</subject><subject>Coatings</subject><subject>Construction standards</subject><subject>Density functional theory</subject><subject>Desalination</subject><subject>Enhanced photothermal effect</subject><subject>Evaporation</subject><subject>Metal ions</subject><subject>Photothermal conversion</subject><subject>Polydopamine</subject><subject>Protective coatings</subject><subject>Seawater</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Solar steam generation</subject><subject>Steam generation</subject><subject>Wood</subject><subject>Wood composites</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5AicU7qR5LaJwQVL6kSF3q2HHvTOkriYLug_nsSpXf2soedmdV8CN0TnBFMylWTDa49deAziinJCGV5mV-gBeFrllIqyCVaYMxoynhJrtFNCA3GmBY0X6Dds3Mh2n6fBNcqn4QIqkv20INX0bo-qU7JcHDRxQP4TrUJ9AfVazDJ9NO4QXW2h9WvcybRrhtcsBHCLbqqVRvg7ryXaPf68rV5T7efbx-bp22qc8xiStd5XVVKG2OYJlzxWokaC14xzjTlIESpiTKaGCHY2ErhYhyaC0q1gjxnS_Qw5w7efR8hRNm4o-_Hl5IWmBeCcFKOqmJWae9C8FDLwdtO-ZMkWE4EZSPPBOVEUM4ER9_j7IOxwo8dr0FbmMpbDzpK4-w_CX9sYH43</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Zou, Yuan</creator><creator>Yang, Peng</creator><creator>Yang, Lu</creator><creator>Li, Ning</creator><creator>Duan, Gaigai</creator><creator>Liu, Xianhu</creator><creator>Li, Yiwen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210305</creationdate><title>Boosting solar steam generation by photothermal enhanced polydopamine/wood composites</title><author>Zou, Yuan ; Yang, Peng ; Yang, Lu ; Li, Ning ; Duan, Gaigai ; Liu, Xianhu ; Li, Yiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-274fbbacddd3c18a8fa9f098b383c28e996c1adc1d993234a0555524922cae443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Amino acids</topic><topic>Arginine</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Coating</topic><topic>Coatings</topic><topic>Construction standards</topic><topic>Density functional theory</topic><topic>Desalination</topic><topic>Enhanced photothermal effect</topic><topic>Evaporation</topic><topic>Metal ions</topic><topic>Photothermal conversion</topic><topic>Polydopamine</topic><topic>Protective coatings</topic><topic>Seawater</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Solar steam generation</topic><topic>Steam generation</topic><topic>Wood</topic><topic>Wood composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yuan</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Li, Yiwen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yuan</au><au>Yang, Peng</au><au>Yang, Lu</au><au>Li, Ning</au><au>Duan, Gaigai</au><au>Liu, Xianhu</au><au>Li, Yiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting solar steam generation by photothermal enhanced polydopamine/wood composites</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-03-05</date><risdate>2021</risdate><volume>217</volume><spage>123464</spage><pages>123464-</pages><artnum>123464</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Solar steam generation is an emerging strategy for water desalination using renewable solar energy and seawater resources. In order to convert solar energy into heat for seawater evaporation, we developed a bi-layered structure composite for high-efficient solar evaporation based on photothermal-enhanced arginine-doped polydopamine (APDA) and raw wood, which are biodegradable and sustainable. Note that the APDA coating layer exhibited improved optical absorption and photothermal conversion ability compared with conventional polydopamine (PDA) coating on account of the construction of donor-acceptor pairs within the APDA microstructure system. Density functional theory (DTF) calculation further confirmed that the energy bandgap of APDA could be narrowed though donor-acceptor microstructures and then enhanced the absorption spectrum. The resulting APDA-wood composite performed a solar vapor generation efficiency of ~77% on the condition of 1 sun illumination. The water evaporation process was quite stable over 100 cycles and the metal ions in seawater were almost eliminated after desalination. This amino acid-initiated cost-effective and facile coating method provided new opportunities to fabricate photothermal-enhanced coating materials for solar evaporation applications.
[Display omitted]
•APDA is prepared with improved light absorption and total photothermal effect.•Donor-acceptor microstructures within the APDA system could decrease the bandgap.•APDA-wood composite is fabricated for efficient solar steam generation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2021.123464</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-03, Vol.217, p.123464, Article 123464 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2508591816 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Absorption spectra Amino acids Arginine Biodegradability Biodegradation Coating Coatings Construction standards Density functional theory Desalination Enhanced photothermal effect Evaporation Metal ions Photothermal conversion Polydopamine Protective coatings Seawater Solar energy Solar energy conversion Solar steam generation Steam generation Wood Wood composites |
title | Boosting solar steam generation by photothermal enhanced polydopamine/wood composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20solar%20steam%20generation%20by%20photothermal%20enhanced%20polydopamine/wood%20composites&rft.jtitle=Polymer%20(Guilford)&rft.au=Zou,%20Yuan&rft.date=2021-03-05&rft.volume=217&rft.spage=123464&rft.pages=123464-&rft.artnum=123464&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2021.123464&rft_dat=%3Cproquest_cross%3E2508591816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508591816&rft_id=info:pmid/&rft_els_id=S0032386121000872&rfr_iscdi=true |