Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach

Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and fede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021, Vol.2021, p.1-14
Hauptverfasser: Rahmadika, Sandi, Firdaus, Muhammad, Jang, Seolah, Rhee, Kyung-Hyune
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2021
creator Rahmadika, Sandi
Firdaus, Muhammad
Jang, Seolah
Rhee, Kyung-Hyune
description Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.
doi_str_mv 10.1155/2021/5550153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508265490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508265490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</originalsourceid><addsrcrecordid>eNp9kEFPwjAYhhujiYje_AFNPOrka9duqzcggCRED-p56dpvMJgtdiOEf-8IxKOn7z08ed8vDyH3DJ4Zk3LAgbOBlBKYjC9Ij6lYRcA4v_zLTFyTm6ZZAyRMpKJHcFR7szErXblo4nRRo6VyRid2ifQN270Pm4ZqZ-kID97ZFzp0dO5arOtqia6l4-CbJvqoak-naDHotitYoA6ucks63G6D12Z1S65KXTd4d7598jWdfI5fo8X7bD4eLiIjIG6juEzTgqeZFGisyABlJgptMLU64RzRKmGLEpSOjSpFCkylRiteQFlYCwmP--Th1NvN_uywafO13wXXTeZcQsYTKRR01NOJMsfnA5b5NlTfOhxyBvlRZH4UmZ9FdvjjCV9Vzup99T_9CzWEcds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508265490</pqid></control><display><type>article</type><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune</creator><contributor>Wang, Jinwei ; Jinwei Wang</contributor><creatorcontrib>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune ; Wang, Jinwei ; Jinwei Wang</creatorcontrib><description>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/5550153</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Artificial intelligence ; Blockchain ; Collaboration ; Communication ; Computation offloading ; Control algorithms ; Cryptography ; Decision making ; Efficiency ; Energy consumption ; Federated learning ; Privacy ; Software ; Wireless networks</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-14</ispartof><rights>Copyright © 2021 Sandi Rahmadika et al.</rights><rights>Copyright © 2021 Sandi Rahmadika et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</citedby><cites>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</cites><orcidid>0000-0002-7848-6579 ; 0000-0003-0104-848X ; 0000-0003-0466-8254 ; 0000-0002-4636-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Wang, Jinwei</contributor><contributor>Jinwei Wang</contributor><creatorcontrib>Rahmadika, Sandi</creatorcontrib><creatorcontrib>Firdaus, Muhammad</creatorcontrib><creatorcontrib>Jang, Seolah</creatorcontrib><creatorcontrib>Rhee, Kyung-Hyune</creatorcontrib><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><title>Security and communication networks</title><description>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</description><subject>Artificial intelligence</subject><subject>Blockchain</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Control algorithms</subject><subject>Cryptography</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>Software</subject><subject>Wireless networks</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwjAYhhujiYje_AFNPOrka9duqzcggCRED-p56dpvMJgtdiOEf-8IxKOn7z08ed8vDyH3DJ4Zk3LAgbOBlBKYjC9Ij6lYRcA4v_zLTFyTm6ZZAyRMpKJHcFR7szErXblo4nRRo6VyRid2ifQN270Pm4ZqZ-kID97ZFzp0dO5arOtqia6l4-CbJvqoak-naDHotitYoA6ucks63G6D12Z1S65KXTd4d7598jWdfI5fo8X7bD4eLiIjIG6juEzTgqeZFGisyABlJgptMLU64RzRKmGLEpSOjSpFCkylRiteQFlYCwmP--Th1NvN_uywafO13wXXTeZcQsYTKRR01NOJMsfnA5b5NlTfOhxyBvlRZH4UmZ9FdvjjCV9Vzup99T_9CzWEcds</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rahmadika, Sandi</creator><creator>Firdaus, Muhammad</creator><creator>Jang, Seolah</creator><creator>Rhee, Kyung-Hyune</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7848-6579</orcidid><orcidid>https://orcid.org/0000-0003-0104-848X</orcidid><orcidid>https://orcid.org/0000-0003-0466-8254</orcidid><orcidid>https://orcid.org/0000-0002-4636-5027</orcidid></search><sort><creationdate>2021</creationdate><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><author>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Blockchain</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Control algorithms</topic><topic>Cryptography</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>Software</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmadika, Sandi</creatorcontrib><creatorcontrib>Firdaus, Muhammad</creatorcontrib><creatorcontrib>Jang, Seolah</creatorcontrib><creatorcontrib>Rhee, Kyung-Hyune</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmadika, Sandi</au><au>Firdaus, Muhammad</au><au>Jang, Seolah</au><au>Rhee, Kyung-Hyune</au><au>Wang, Jinwei</au><au>Jinwei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</atitle><jtitle>Security and communication networks</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/5550153</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7848-6579</orcidid><orcidid>https://orcid.org/0000-0003-0104-848X</orcidid><orcidid>https://orcid.org/0000-0003-0466-8254</orcidid><orcidid>https://orcid.org/0000-0002-4636-5027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2021, Vol.2021, p.1-14
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2508265490
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Artificial intelligence
Blockchain
Collaboration
Communication
Computation offloading
Control algorithms
Cryptography
Decision making
Efficiency
Energy consumption
Federated learning
Privacy
Software
Wireless networks
title Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%205G%20Edge%20Networks%20and%20Beyond:%20An%20Intelligent%20Cross-Silo%20Federated%20Learning%20Approach&rft.jtitle=Security%20and%20communication%20networks&rft.au=Rahmadika,%20Sandi&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/5550153&rft_dat=%3Cproquest_cross%3E2508265490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508265490&rft_id=info:pmid/&rfr_iscdi=true