Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach
Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and fede...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2021, Vol.2021, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2021 |
creator | Rahmadika, Sandi Firdaus, Muhammad Jang, Seolah Rhee, Kyung-Hyune |
description | Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE. |
doi_str_mv | 10.1155/2021/5550153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508265490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508265490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</originalsourceid><addsrcrecordid>eNp9kEFPwjAYhhujiYje_AFNPOrka9duqzcggCRED-p56dpvMJgtdiOEf-8IxKOn7z08ed8vDyH3DJ4Zk3LAgbOBlBKYjC9Ij6lYRcA4v_zLTFyTm6ZZAyRMpKJHcFR7szErXblo4nRRo6VyRid2ifQN270Pm4ZqZ-kID97ZFzp0dO5arOtqia6l4-CbJvqoak-naDHotitYoA6ucks63G6D12Z1S65KXTd4d7598jWdfI5fo8X7bD4eLiIjIG6juEzTgqeZFGisyABlJgptMLU64RzRKmGLEpSOjSpFCkylRiteQFlYCwmP--Th1NvN_uywafO13wXXTeZcQsYTKRR01NOJMsfnA5b5NlTfOhxyBvlRZH4UmZ9FdvjjCV9Vzup99T_9CzWEcds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508265490</pqid></control><display><type>article</type><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune</creator><contributor>Wang, Jinwei ; Jinwei Wang</contributor><creatorcontrib>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune ; Wang, Jinwei ; Jinwei Wang</creatorcontrib><description>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/5550153</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Artificial intelligence ; Blockchain ; Collaboration ; Communication ; Computation offloading ; Control algorithms ; Cryptography ; Decision making ; Efficiency ; Energy consumption ; Federated learning ; Privacy ; Software ; Wireless networks</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-14</ispartof><rights>Copyright © 2021 Sandi Rahmadika et al.</rights><rights>Copyright © 2021 Sandi Rahmadika et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</citedby><cites>FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</cites><orcidid>0000-0002-7848-6579 ; 0000-0003-0104-848X ; 0000-0003-0466-8254 ; 0000-0002-4636-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Wang, Jinwei</contributor><contributor>Jinwei Wang</contributor><creatorcontrib>Rahmadika, Sandi</creatorcontrib><creatorcontrib>Firdaus, Muhammad</creatorcontrib><creatorcontrib>Jang, Seolah</creatorcontrib><creatorcontrib>Rhee, Kyung-Hyune</creatorcontrib><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><title>Security and communication networks</title><description>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</description><subject>Artificial intelligence</subject><subject>Blockchain</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Control algorithms</subject><subject>Cryptography</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>Software</subject><subject>Wireless networks</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwjAYhhujiYje_AFNPOrka9duqzcggCRED-p56dpvMJgtdiOEf-8IxKOn7z08ed8vDyH3DJ4Zk3LAgbOBlBKYjC9Ij6lYRcA4v_zLTFyTm6ZZAyRMpKJHcFR7szErXblo4nRRo6VyRid2ifQN270Pm4ZqZ-kID97ZFzp0dO5arOtqia6l4-CbJvqoak-naDHotitYoA6ucks63G6D12Z1S65KXTd4d7598jWdfI5fo8X7bD4eLiIjIG6juEzTgqeZFGisyABlJgptMLU64RzRKmGLEpSOjSpFCkylRiteQFlYCwmP--Th1NvN_uywafO13wXXTeZcQsYTKRR01NOJMsfnA5b5NlTfOhxyBvlRZH4UmZ9FdvjjCV9Vzup99T_9CzWEcds</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rahmadika, Sandi</creator><creator>Firdaus, Muhammad</creator><creator>Jang, Seolah</creator><creator>Rhee, Kyung-Hyune</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7848-6579</orcidid><orcidid>https://orcid.org/0000-0003-0104-848X</orcidid><orcidid>https://orcid.org/0000-0003-0466-8254</orcidid><orcidid>https://orcid.org/0000-0002-4636-5027</orcidid></search><sort><creationdate>2021</creationdate><title>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</title><author>Rahmadika, Sandi ; Firdaus, Muhammad ; Jang, Seolah ; Rhee, Kyung-Hyune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3f77b27854ecd480e584bace7da622eed94dbf09a3c9f470197ca92b0fbdd0623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Blockchain</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Control algorithms</topic><topic>Cryptography</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>Software</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmadika, Sandi</creatorcontrib><creatorcontrib>Firdaus, Muhammad</creatorcontrib><creatorcontrib>Jang, Seolah</creatorcontrib><creatorcontrib>Rhee, Kyung-Hyune</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmadika, Sandi</au><au>Firdaus, Muhammad</au><au>Jang, Seolah</au><au>Rhee, Kyung-Hyune</au><au>Wang, Jinwei</au><au>Jinwei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach</atitle><jtitle>Security and communication networks</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/5550153</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7848-6579</orcidid><orcidid>https://orcid.org/0000-0003-0104-848X</orcidid><orcidid>https://orcid.org/0000-0003-0466-8254</orcidid><orcidid>https://orcid.org/0000-0002-4636-5027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2021, Vol.2021, p.1-14 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2508265490 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Artificial intelligence Blockchain Collaboration Communication Computation offloading Control algorithms Cryptography Decision making Efficiency Energy consumption Federated learning Privacy Software Wireless networks |
title | Blockchain-Enabled 5G Edge Networks and Beyond: An Intelligent Cross-Silo Federated Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%205G%20Edge%20Networks%20and%20Beyond:%20An%20Intelligent%20Cross-Silo%20Federated%20Learning%20Approach&rft.jtitle=Security%20and%20communication%20networks&rft.au=Rahmadika,%20Sandi&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/5550153&rft_dat=%3Cproquest_cross%3E2508265490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508265490&rft_id=info:pmid/&rfr_iscdi=true |