Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network
In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase for...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2021, Vol.2021, p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2021 |
creator | Zou, Hao Yang, Pengpeng Ni, Rongrong Zhao, Yao |
description | In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods. |
doi_str_mv | 10.1155/2021/6663486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508265459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508265459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</originalsourceid><addsrcrecordid>eNp9kE1PAjEURRujiYju_AFNXOpIP6bDzBIngCREN7ievOm8yiC02BaI_94hEJeu3l2c3Jt3CLnn7JlzpQaCCT7IskymeXZBeryQRcK4EJd_mafX5CaEFWMZT4dpjyxGNrbJxHm0odWBOkNnG_hEWjobPYRIx3YJVuMGbaQvELChztIpWvQQ2z3SUbNHH8C3sKZvGA_Of92SKwPrgHfn2ycfk_GifE3m79NZOZonWsphTIzJtSiUAMYaaXiuNROqaJiEujYp5zLVDAwaZnJQkpnurxoRVFEXxnAUsk8eTr1b7753GGK1cjtvu8lKKJaLTKWq6KinE6W9C8Gjqba-3YD_qTirjt6qo7fq7K3DH0_4srUNHNr_6V_iOG0C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508265459</pqid></control><display><type>article</type><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao</creator><contributor>Zhou, Nanrun ; Nanrun Zhou</contributor><creatorcontrib>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao ; Zhou, Nanrun ; Nanrun Zhou</creatorcontrib><description>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/6663486</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Deep learning ; Digital imaging ; Domains ; Forensic computing ; Forensic sciences ; Forging ; Generative adversarial networks ; Histograms ; Image contrast ; Image enhancement ; Image quality ; Methods ; Multimedia ; Pixels ; Sensors ; Visual effects</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 Hao Zou et al.</rights><rights>Copyright © 2021 Hao Zou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</citedby><cites>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</cites><orcidid>0000-0002-4655-8291 ; 0000-0002-8581-9554 ; 0000-0001-5021-5198 ; 0000-0002-5096-8752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Zhou, Nanrun</contributor><contributor>Nanrun Zhou</contributor><creatorcontrib>Zou, Hao</creatorcontrib><creatorcontrib>Yang, Pengpeng</creatorcontrib><creatorcontrib>Ni, Rongrong</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><title>Security and communication networks</title><description>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</description><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Domains</subject><subject>Forensic computing</subject><subject>Forensic sciences</subject><subject>Forging</subject><subject>Generative adversarial networks</subject><subject>Histograms</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Pixels</subject><subject>Sensors</subject><subject>Visual effects</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEURRujiYju_AFNXOpIP6bDzBIngCREN7ievOm8yiC02BaI_94hEJeu3l2c3Jt3CLnn7JlzpQaCCT7IskymeXZBeryQRcK4EJd_mafX5CaEFWMZT4dpjyxGNrbJxHm0odWBOkNnG_hEWjobPYRIx3YJVuMGbaQvELChztIpWvQQ2z3SUbNHH8C3sKZvGA_Of92SKwPrgHfn2ycfk_GifE3m79NZOZonWsphTIzJtSiUAMYaaXiuNROqaJiEujYp5zLVDAwaZnJQkpnurxoRVFEXxnAUsk8eTr1b7753GGK1cjtvu8lKKJaLTKWq6KinE6W9C8Gjqba-3YD_qTirjt6qo7fq7K3DH0_4srUNHNr_6V_iOG0C</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zou, Hao</creator><creator>Yang, Pengpeng</creator><creator>Ni, Rongrong</creator><creator>Zhao, Yao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4655-8291</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0001-5021-5198</orcidid><orcidid>https://orcid.org/0000-0002-5096-8752</orcidid></search><sort><creationdate>2021</creationdate><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><author>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Domains</topic><topic>Forensic computing</topic><topic>Forensic sciences</topic><topic>Forging</topic><topic>Generative adversarial networks</topic><topic>Histograms</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Pixels</topic><topic>Sensors</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Hao</creatorcontrib><creatorcontrib>Yang, Pengpeng</creatorcontrib><creatorcontrib>Ni, Rongrong</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Hao</au><au>Yang, Pengpeng</au><au>Ni, Rongrong</au><au>Zhao, Yao</au><au>Zhou, Nanrun</au><au>Nanrun Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</atitle><jtitle>Security and communication networks</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/6663486</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4655-8291</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0001-5021-5198</orcidid><orcidid>https://orcid.org/0000-0002-5096-8752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2021, Vol.2021, p.1-8 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2508265459 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Deep learning Digital imaging Domains Forensic computing Forensic sciences Forging Generative adversarial networks Histograms Image contrast Image enhancement Image quality Methods Multimedia Pixels Sensors Visual effects |
title | Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-Forensics%20of%20Image%20Contrast%20Enhancement%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zou,%20Hao&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/6663486&rft_dat=%3Cproquest_cross%3E2508265459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508265459&rft_id=info:pmid/&rfr_iscdi=true |