Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network

In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021, Vol.2021, p.1-8
Hauptverfasser: Zou, Hao, Yang, Pengpeng, Ni, Rongrong, Zhao, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2021
creator Zou, Hao
Yang, Pengpeng
Ni, Rongrong
Zhao, Yao
description In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.
doi_str_mv 10.1155/2021/6663486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508265459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508265459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</originalsourceid><addsrcrecordid>eNp9kE1PAjEURRujiYju_AFNXOpIP6bDzBIngCREN7ievOm8yiC02BaI_94hEJeu3l2c3Jt3CLnn7JlzpQaCCT7IskymeXZBeryQRcK4EJd_mafX5CaEFWMZT4dpjyxGNrbJxHm0odWBOkNnG_hEWjobPYRIx3YJVuMGbaQvELChztIpWvQQ2z3SUbNHH8C3sKZvGA_Of92SKwPrgHfn2ycfk_GifE3m79NZOZonWsphTIzJtSiUAMYaaXiuNROqaJiEujYp5zLVDAwaZnJQkpnurxoRVFEXxnAUsk8eTr1b7753GGK1cjtvu8lKKJaLTKWq6KinE6W9C8Gjqba-3YD_qTirjt6qo7fq7K3DH0_4srUNHNr_6V_iOG0C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508265459</pqid></control><display><type>article</type><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao</creator><contributor>Zhou, Nanrun ; Nanrun Zhou</contributor><creatorcontrib>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao ; Zhou, Nanrun ; Nanrun Zhou</creatorcontrib><description>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/6663486</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Deep learning ; Digital imaging ; Domains ; Forensic computing ; Forensic sciences ; Forging ; Generative adversarial networks ; Histograms ; Image contrast ; Image enhancement ; Image quality ; Methods ; Multimedia ; Pixels ; Sensors ; Visual effects</subject><ispartof>Security and communication networks, 2021, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 Hao Zou et al.</rights><rights>Copyright © 2021 Hao Zou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</citedby><cites>FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</cites><orcidid>0000-0002-4655-8291 ; 0000-0002-8581-9554 ; 0000-0001-5021-5198 ; 0000-0002-5096-8752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Zhou, Nanrun</contributor><contributor>Nanrun Zhou</contributor><creatorcontrib>Zou, Hao</creatorcontrib><creatorcontrib>Yang, Pengpeng</creatorcontrib><creatorcontrib>Ni, Rongrong</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><title>Security and communication networks</title><description>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</description><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Domains</subject><subject>Forensic computing</subject><subject>Forensic sciences</subject><subject>Forging</subject><subject>Generative adversarial networks</subject><subject>Histograms</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Pixels</subject><subject>Sensors</subject><subject>Visual effects</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEURRujiYju_AFNXOpIP6bDzBIngCREN7ievOm8yiC02BaI_94hEJeu3l2c3Jt3CLnn7JlzpQaCCT7IskymeXZBeryQRcK4EJd_mafX5CaEFWMZT4dpjyxGNrbJxHm0odWBOkNnG_hEWjobPYRIx3YJVuMGbaQvELChztIpWvQQ2z3SUbNHH8C3sKZvGA_Of92SKwPrgHfn2ycfk_GifE3m79NZOZonWsphTIzJtSiUAMYaaXiuNROqaJiEujYp5zLVDAwaZnJQkpnurxoRVFEXxnAUsk8eTr1b7753GGK1cjtvu8lKKJaLTKWq6KinE6W9C8Gjqba-3YD_qTirjt6qo7fq7K3DH0_4srUNHNr_6V_iOG0C</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zou, Hao</creator><creator>Yang, Pengpeng</creator><creator>Ni, Rongrong</creator><creator>Zhao, Yao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4655-8291</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0001-5021-5198</orcidid><orcidid>https://orcid.org/0000-0002-5096-8752</orcidid></search><sort><creationdate>2021</creationdate><title>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</title><author>Zou, Hao ; Yang, Pengpeng ; Ni, Rongrong ; Zhao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ff8c2952a00d3f18cc0259d03abbf41134c0afef0f8a530f634beea59b9ff1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Domains</topic><topic>Forensic computing</topic><topic>Forensic sciences</topic><topic>Forging</topic><topic>Generative adversarial networks</topic><topic>Histograms</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Pixels</topic><topic>Sensors</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Hao</creatorcontrib><creatorcontrib>Yang, Pengpeng</creatorcontrib><creatorcontrib>Ni, Rongrong</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Hao</au><au>Yang, Pengpeng</au><au>Ni, Rongrong</au><au>Zhao, Yao</au><au>Zhou, Nanrun</au><au>Nanrun Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network</atitle><jtitle>Security and communication networks</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/6663486</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4655-8291</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0001-5021-5198</orcidid><orcidid>https://orcid.org/0000-0002-5096-8752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2021, Vol.2021, p.1-8
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2508265459
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Deep learning
Digital imaging
Domains
Forensic computing
Forensic sciences
Forging
Generative adversarial networks
Histograms
Image contrast
Image enhancement
Image quality
Methods
Multimedia
Pixels
Sensors
Visual effects
title Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-Forensics%20of%20Image%20Contrast%20Enhancement%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zou,%20Hao&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/6663486&rft_dat=%3Cproquest_cross%3E2508265459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508265459&rft_id=info:pmid/&rfr_iscdi=true