Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation
Full cells employing Li3VO4 (LVO) and Li3V2(PO4)3 (LVP) as anode and cathode, respectively, are energy storage devices offering high power and cyclability. Such full cells, termed as LVO//LVP, were constructed in this study, and they exhibited low capacity retention (72 %) over 1000 cycles at a high...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2021/03/05, Vol.89(2), pp.204-210 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 2 |
container_start_page | 204 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 89 |
creator | CHIKAOKA, Yu OKUDA, Reiko IWAMA, Etsuro KUWAO, Masafumi NAOI, Wako NAOI, Katsuhiko |
description | Full cells employing Li3VO4 (LVO) and Li3V2(PO4)3 (LVP) as anode and cathode, respectively, are energy storage devices offering high power and cyclability. Such full cells, termed as LVO//LVP, were constructed in this study, and they exhibited low capacity retention (72 %) over 1000 cycles at a high temperature of 50 °C. We clarified the capacity degradation mechanism using charge-discharge cycling simulations based on a difference in coulombic efficiency (CE) between two electrodes with/without a capacity decay at electrode materials. Simulation results indicate that the low CE of LVO accompanied with a cyclic capacity decay of LVO was responsible for the full cell capacity degradation. The LVO capacity decay was further elucidated by experimental evidences, showing that the cycled LVO was covered by resistive polymeric films derived from the electrolyte reductive decomposition. Indeed, the capacity retention of full cell cycling was improved to 86–96 % by mitigating the effect of such side reaction, demonstrating the credibility and effectivity of our simple cycling simulation. Our finding may help to elucidate the degradation mode of the full cell cycling with less experimental efforts and work out own strategy to mitigate the degradation. |
doi_str_mv | 10.5796/electrochemistry.20-00162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2507996671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_203e48fb00ec4723b3764d8834c6162c</doaj_id><sourcerecordid>2507996671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-8bf05e4964b38a63a59ebbb82ca62b3930e31dafe0ac2ff8cf867ee92d7e38d3</originalsourceid><addsrcrecordid>eNplkUFv3CAQha2olbJK8x-oemkPzmLAGI6tm6SRVtpIiXpFGA8OK9akwB787-P1pntoLwwavffNaF5RfK7wTd1IvgYPJsdgXmDvUo7TDcElxhUnF8WKVIKXhNXVh2JVUcZKWjNyWVyntMOzBksuiVwV-SlHnWGYkA0RtZPxunPe5Qk9xuDDOOjswoiCRRtHf2_Zen2s5Ovjln2j6O7gPWrB-4R-6AQ9mqXti44DlD9dMstvgbpxQE9uf_AL7lPx0Wqf4Pq9XhXPd7fP7a9ys71_aL9vSlPXOJeis7gGJjnrqNCc6lpC13WCGM1JRyXFQKteW8DaEGuFsYI3AJL0DVDR06vi4YTtg96p1-j2Ok4qaKeWRoiD0jE740ERTIEJ22EMhjWEdrThrBeCMsPne5qZ9eXEeo3hzwFSVrtwiOO8vSI1bqTkvKlmlTypTAwpRbDnqRVWx8jUv5HNk9US2ezdnry7lPUAZ-ffFf9zCqnI8rwTzsrj3RWM9A3FwqvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507996671</pqid></control><display><type>article</type><title>Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>CHIKAOKA, Yu ; OKUDA, Reiko ; IWAMA, Etsuro ; KUWAO, Masafumi ; NAOI, Wako ; NAOI, Katsuhiko</creator><creatorcontrib>CHIKAOKA, Yu ; OKUDA, Reiko ; IWAMA, Etsuro ; KUWAO, Masafumi ; NAOI, Wako ; NAOI, Katsuhiko</creatorcontrib><description>Full cells employing Li3VO4 (LVO) and Li3V2(PO4)3 (LVP) as anode and cathode, respectively, are energy storage devices offering high power and cyclability. Such full cells, termed as LVO//LVP, were constructed in this study, and they exhibited low capacity retention (72 %) over 1000 cycles at a high temperature of 50 °C. We clarified the capacity degradation mechanism using charge-discharge cycling simulations based on a difference in coulombic efficiency (CE) between two electrodes with/without a capacity decay at electrode materials. Simulation results indicate that the low CE of LVO accompanied with a cyclic capacity decay of LVO was responsible for the full cell capacity degradation. The LVO capacity decay was further elucidated by experimental evidences, showing that the cycled LVO was covered by resistive polymeric films derived from the electrolyte reductive decomposition. Indeed, the capacity retention of full cell cycling was improved to 86–96 % by mitigating the effect of such side reaction, demonstrating the credibility and effectivity of our simple cycling simulation. Our finding may help to elucidate the degradation mode of the full cell cycling with less experimental efforts and work out own strategy to mitigate the degradation.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.20-00162</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Charge simulation ; Charge-discharge Simulation ; Cyclability ; Cycles ; Decay ; Degradation ; Discharge ; Electrode materials ; Electrodes ; Electrolytic cells ; Energy storage ; High temperature ; Li3VO4//Li3V2(PO4)3 Full Cell ; N/P Capacity Ratio ; Polymer films ; Prolongation ; Retention ; Simulation</subject><ispartof>Electrochemistry, 2021/03/05, Vol.89(2), pp.204-210</ispartof><rights>The Author(s) 2020. Published by ECSJ.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-8bf05e4964b38a63a59ebbb82ca62b3930e31dafe0ac2ff8cf867ee92d7e38d3</citedby><cites>FETCH-LOGICAL-c550t-8bf05e4964b38a63a59ebbb82ca62b3930e31dafe0ac2ff8cf867ee92d7e38d3</cites><orcidid>0000-0002-0265-2235 ; 0000-0002-4279-5337 ; 0000-0001-6496-4050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,1879,27911,27912</link.rule.ids></links><search><creatorcontrib>CHIKAOKA, Yu</creatorcontrib><creatorcontrib>OKUDA, Reiko</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>KUWAO, Masafumi</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><title>Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Full cells employing Li3VO4 (LVO) and Li3V2(PO4)3 (LVP) as anode and cathode, respectively, are energy storage devices offering high power and cyclability. Such full cells, termed as LVO//LVP, were constructed in this study, and they exhibited low capacity retention (72 %) over 1000 cycles at a high temperature of 50 °C. We clarified the capacity degradation mechanism using charge-discharge cycling simulations based on a difference in coulombic efficiency (CE) between two electrodes with/without a capacity decay at electrode materials. Simulation results indicate that the low CE of LVO accompanied with a cyclic capacity decay of LVO was responsible for the full cell capacity degradation. The LVO capacity decay was further elucidated by experimental evidences, showing that the cycled LVO was covered by resistive polymeric films derived from the electrolyte reductive decomposition. Indeed, the capacity retention of full cell cycling was improved to 86–96 % by mitigating the effect of such side reaction, demonstrating the credibility and effectivity of our simple cycling simulation. Our finding may help to elucidate the degradation mode of the full cell cycling with less experimental efforts and work out own strategy to mitigate the degradation.</description><subject>Charge simulation</subject><subject>Charge-discharge Simulation</subject><subject>Cyclability</subject><subject>Cycles</subject><subject>Decay</subject><subject>Degradation</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Li3VO4//Li3V2(PO4)3 Full Cell</subject><subject>N/P Capacity Ratio</subject><subject>Polymer films</subject><subject>Prolongation</subject><subject>Retention</subject><subject>Simulation</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkUFv3CAQha2olbJK8x-oemkPzmLAGI6tm6SRVtpIiXpFGA8OK9akwB787-P1pntoLwwavffNaF5RfK7wTd1IvgYPJsdgXmDvUo7TDcElxhUnF8WKVIKXhNXVh2JVUcZKWjNyWVyntMOzBksuiVwV-SlHnWGYkA0RtZPxunPe5Qk9xuDDOOjswoiCRRtHf2_Zen2s5Ovjln2j6O7gPWrB-4R-6AQ9mqXti44DlD9dMstvgbpxQE9uf_AL7lPx0Wqf4Pq9XhXPd7fP7a9ys71_aL9vSlPXOJeis7gGJjnrqNCc6lpC13WCGM1JRyXFQKteW8DaEGuFsYI3AJL0DVDR06vi4YTtg96p1-j2Ok4qaKeWRoiD0jE740ERTIEJ22EMhjWEdrThrBeCMsPne5qZ9eXEeo3hzwFSVrtwiOO8vSI1bqTkvKlmlTypTAwpRbDnqRVWx8jUv5HNk9US2ezdnry7lPUAZ-ffFf9zCqnI8rwTzsrj3RWM9A3FwqvU</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>CHIKAOKA, Yu</creator><creator>OKUDA, Reiko</creator><creator>IWAMA, Etsuro</creator><creator>KUWAO, Masafumi</creator><creator>NAOI, Wako</creator><creator>NAOI, Katsuhiko</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0265-2235</orcidid><orcidid>https://orcid.org/0000-0002-4279-5337</orcidid><orcidid>https://orcid.org/0000-0001-6496-4050</orcidid></search><sort><creationdate>20210305</creationdate><title>Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation</title><author>CHIKAOKA, Yu ; OKUDA, Reiko ; IWAMA, Etsuro ; KUWAO, Masafumi ; NAOI, Wako ; NAOI, Katsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-8bf05e4964b38a63a59ebbb82ca62b3930e31dafe0ac2ff8cf867ee92d7e38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge simulation</topic><topic>Charge-discharge Simulation</topic><topic>Cyclability</topic><topic>Cycles</topic><topic>Decay</topic><topic>Degradation</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Li3VO4//Li3V2(PO4)3 Full Cell</topic><topic>N/P Capacity Ratio</topic><topic>Polymer films</topic><topic>Prolongation</topic><topic>Retention</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHIKAOKA, Yu</creatorcontrib><creatorcontrib>OKUDA, Reiko</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>KUWAO, Masafumi</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHIKAOKA, Yu</au><au>OKUDA, Reiko</au><au>IWAMA, Etsuro</au><au>KUWAO, Masafumi</au><au>NAOI, Wako</au><au>NAOI, Katsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>89</volume><issue>2</issue><spage>204</spage><epage>210</epage><pages>204-210</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Full cells employing Li3VO4 (LVO) and Li3V2(PO4)3 (LVP) as anode and cathode, respectively, are energy storage devices offering high power and cyclability. Such full cells, termed as LVO//LVP, were constructed in this study, and they exhibited low capacity retention (72 %) over 1000 cycles at a high temperature of 50 °C. We clarified the capacity degradation mechanism using charge-discharge cycling simulations based on a difference in coulombic efficiency (CE) between two electrodes with/without a capacity decay at electrode materials. Simulation results indicate that the low CE of LVO accompanied with a cyclic capacity decay of LVO was responsible for the full cell capacity degradation. The LVO capacity decay was further elucidated by experimental evidences, showing that the cycled LVO was covered by resistive polymeric films derived from the electrolyte reductive decomposition. Indeed, the capacity retention of full cell cycling was improved to 86–96 % by mitigating the effect of such side reaction, demonstrating the credibility and effectivity of our simple cycling simulation. Our finding may help to elucidate the degradation mode of the full cell cycling with less experimental efforts and work out own strategy to mitigate the degradation.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.20-00162</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0265-2235</orcidid><orcidid>https://orcid.org/0000-0002-4279-5337</orcidid><orcidid>https://orcid.org/0000-0001-6496-4050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2021/03/05, Vol.89(2), pp.204-210 |
issn | 1344-3542 2186-2451 |
language | eng |
recordid | cdi_proquest_journals_2507996671 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Charge simulation Charge-discharge Simulation Cyclability Cycles Decay Degradation Discharge Electrode materials Electrodes Electrolytic cells Energy storage High temperature Li3VO4//Li3V2(PO4)3 Full Cell N/P Capacity Ratio Polymer films Prolongation Retention Simulation |
title | Strategy for Cyclability Prolongation of Li3VO4//Li3V2(PO4)3 Full Cells Based on Charge-Discharge Cycling Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20for%20Cyclability%20Prolongation%20of%20Li3VO4//Li3V2(PO4)3%20Full%20Cells%20Based%20on%20Charge-Discharge%20Cycling%20Simulation&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=CHIKAOKA,%20Yu&rft.date=2021-03-05&rft.volume=89&rft.issue=2&rft.spage=204&rft.epage=210&rft.pages=204-210&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.20-00162&rft_dat=%3Cproquest_doaj_%3E2507996671%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507996671&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_203e48fb00ec4723b3764d8834c6162c&rfr_iscdi=true |