Investigating the haemodynamics of myocardial bridging

Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2021-04, Vol.62 (4), Article 86
Hauptverfasser: Vijayaratnam, P. R. S., Fulker, D., Kim, Y. C., Brandt, J., Yi, J., Yong, A. S. C., Kritharides, L., Simmons, A., Barber, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Experiments in fluids
container_volume 62
creator Vijayaratnam, P. R. S.
Fulker, D.
Kim, Y. C.
Brandt, J.
Yi, J.
Yong, A. S. C.
Kritharides, L.
Simmons, A.
Barber, T. J.
description Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia and sudden death. Moreover, there is a tendency for atherosclerotic lesions to develop upstream of the bridge. These lesions may be the result of adverse fluid dynamic phenomena induced by the periodic compression of the artery by the overlying myocardial bridge. It is not possible to visualise these phenomena in vivo, and in this study we present an in vitro model capable of replicating the bridging conditions. This model is comprised of a pressure-measuring guide wire and catheter, a piston pump, a scaled artery model, and a ‘myocardial bridging mechanism’ which periodically compresses the artery model. A proportional-integral-derivative (PID) controller allowed the piston pump to recreate a patient-specific aortic pressure waveform upstream of the occluded artery model segment for each study. Stationary occlusions—achieved by placing 3D printed ‘stenosis inserts’ within the artery model—induced globally reduced pressures downstream of the stenosis when compared against the upstream pressure waveform. Conversely, the pressures downstream of the dynamic stenoses generated by the bridging mechanism closely matched the upstream pressures at all stages of the cardiac cycle except at the end of systole. This divergent pressure behaviour at the end of systole was similarly observed in vivo within a patient with a myocardial bridge. Flow visualisation using a laser sheet enabled dynamic flow structures to be observed, including recirculating flow regions, which may be precursors to arterial dysfunction. Graphic abstract
doi_str_mv 10.1007/s00348-021-03185-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2507988693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507988693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-48082ce32e3a1e8f7e7719a875da406e529e7eabefaef0f89707cf76493bf4aa3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFb_gKuA6-ibj2RmllLUFgpudD28Jm_SlCapM6nQf-9oBHeu3ubcex-HsVsO9xxAP0QAqUwOgucguSlye8ZmXEmRc87VOZuBFjJXplSX7CrGHQAvLJgZK1f9J8WxbXBs-yYbt5RtkbqhPvXYtVXMBp91p6HCULe4zzahrZsEXrMLj_tIN793zt6fn94Wy3z9-rJaPK7zSoIe0yAYUZEUJJGT8Zq05haNLmpUUFIhLGnCDXkkD95YDbryulRWbrxClHN2N_UewvBxTI-63XAMfZp0ogBtjSmtTJSYqCoMMQby7hDaDsPJcXDfftzkxyU_7sePsykkp1BMcN9Q-Kv-J_UFtm5oYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507988693</pqid></control><display><type>article</type><title>Investigating the haemodynamics of myocardial bridging</title><source>SpringerLink Journals</source><creator>Vijayaratnam, P. R. S. ; Fulker, D. ; Kim, Y. C. ; Brandt, J. ; Yi, J. ; Yong, A. S. C. ; Kritharides, L. ; Simmons, A. ; Barber, T. J.</creator><creatorcontrib>Vijayaratnam, P. R. S. ; Fulker, D. ; Kim, Y. C. ; Brandt, J. ; Yi, J. ; Yong, A. S. C. ; Kritharides, L. ; Simmons, A. ; Barber, T. J.</creatorcontrib><description>Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia and sudden death. Moreover, there is a tendency for atherosclerotic lesions to develop upstream of the bridge. These lesions may be the result of adverse fluid dynamic phenomena induced by the periodic compression of the artery by the overlying myocardial bridge. It is not possible to visualise these phenomena in vivo, and in this study we present an in vitro model capable of replicating the bridging conditions. This model is comprised of a pressure-measuring guide wire and catheter, a piston pump, a scaled artery model, and a ‘myocardial bridging mechanism’ which periodically compresses the artery model. A proportional-integral-derivative (PID) controller allowed the piston pump to recreate a patient-specific aortic pressure waveform upstream of the occluded artery model segment for each study. Stationary occlusions—achieved by placing 3D printed ‘stenosis inserts’ within the artery model—induced globally reduced pressures downstream of the stenosis when compared against the upstream pressure waveform. Conversely, the pressures downstream of the dynamic stenoses generated by the bridging mechanism closely matched the upstream pressures at all stages of the cardiac cycle except at the end of systole. This divergent pressure behaviour at the end of systole was similarly observed in vivo within a patient with a myocardial bridge. Flow visualisation using a laser sheet enabled dynamic flow structures to be observed, including recirculating flow regions, which may be precursors to arterial dysfunction. Graphic abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-021-03185-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aorta ; Arrhythmia ; Atherosclerosis ; Bridge loads ; Congenital anomalies ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow visualization ; Fluid- and Aerodynamics ; Guide wires ; Heat and Mass Transfer ; Hemodynamics ; In vivo methods and tests ; Inserts ; Ischemia ; Lesions ; Muscles ; Proportional integral derivative ; Research Article ; Segments ; Systole ; Three dimensional printing ; Upstream ; Veins &amp; arteries ; Waveforms</subject><ispartof>Experiments in fluids, 2021-04, Vol.62 (4), Article 86</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-48082ce32e3a1e8f7e7719a875da406e529e7eabefaef0f89707cf76493bf4aa3</cites><orcidid>0000-0002-1219-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-021-03185-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-021-03185-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Vijayaratnam, P. R. S.</creatorcontrib><creatorcontrib>Fulker, D.</creatorcontrib><creatorcontrib>Kim, Y. C.</creatorcontrib><creatorcontrib>Brandt, J.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yong, A. S. C.</creatorcontrib><creatorcontrib>Kritharides, L.</creatorcontrib><creatorcontrib>Simmons, A.</creatorcontrib><creatorcontrib>Barber, T. J.</creatorcontrib><title>Investigating the haemodynamics of myocardial bridging</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia and sudden death. Moreover, there is a tendency for atherosclerotic lesions to develop upstream of the bridge. These lesions may be the result of adverse fluid dynamic phenomena induced by the periodic compression of the artery by the overlying myocardial bridge. It is not possible to visualise these phenomena in vivo, and in this study we present an in vitro model capable of replicating the bridging conditions. This model is comprised of a pressure-measuring guide wire and catheter, a piston pump, a scaled artery model, and a ‘myocardial bridging mechanism’ which periodically compresses the artery model. A proportional-integral-derivative (PID) controller allowed the piston pump to recreate a patient-specific aortic pressure waveform upstream of the occluded artery model segment for each study. Stationary occlusions—achieved by placing 3D printed ‘stenosis inserts’ within the artery model—induced globally reduced pressures downstream of the stenosis when compared against the upstream pressure waveform. Conversely, the pressures downstream of the dynamic stenoses generated by the bridging mechanism closely matched the upstream pressures at all stages of the cardiac cycle except at the end of systole. This divergent pressure behaviour at the end of systole was similarly observed in vivo within a patient with a myocardial bridge. Flow visualisation using a laser sheet enabled dynamic flow structures to be observed, including recirculating flow regions, which may be precursors to arterial dysfunction. Graphic abstract</description><subject>Aorta</subject><subject>Arrhythmia</subject><subject>Atherosclerosis</subject><subject>Bridge loads</subject><subject>Congenital anomalies</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow visualization</subject><subject>Fluid- and Aerodynamics</subject><subject>Guide wires</subject><subject>Heat and Mass Transfer</subject><subject>Hemodynamics</subject><subject>In vivo methods and tests</subject><subject>Inserts</subject><subject>Ischemia</subject><subject>Lesions</subject><subject>Muscles</subject><subject>Proportional integral derivative</subject><subject>Research Article</subject><subject>Segments</subject><subject>Systole</subject><subject>Three dimensional printing</subject><subject>Upstream</subject><subject>Veins &amp; arteries</subject><subject>Waveforms</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRsFb_gKuA6-ibj2RmllLUFgpudD28Jm_SlCapM6nQf-9oBHeu3ubcex-HsVsO9xxAP0QAqUwOgucguSlye8ZmXEmRc87VOZuBFjJXplSX7CrGHQAvLJgZK1f9J8WxbXBs-yYbt5RtkbqhPvXYtVXMBp91p6HCULe4zzahrZsEXrMLj_tIN793zt6fn94Wy3z9-rJaPK7zSoIe0yAYUZEUJJGT8Zq05haNLmpUUFIhLGnCDXkkD95YDbryulRWbrxClHN2N_UewvBxTI-63XAMfZp0ogBtjSmtTJSYqCoMMQby7hDaDsPJcXDfftzkxyU_7sePsykkp1BMcN9Q-Kv-J_UFtm5oYQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vijayaratnam, P. R. S.</creator><creator>Fulker, D.</creator><creator>Kim, Y. C.</creator><creator>Brandt, J.</creator><creator>Yi, J.</creator><creator>Yong, A. S. C.</creator><creator>Kritharides, L.</creator><creator>Simmons, A.</creator><creator>Barber, T. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1219-0169</orcidid></search><sort><creationdate>20210401</creationdate><title>Investigating the haemodynamics of myocardial bridging</title><author>Vijayaratnam, P. R. S. ; Fulker, D. ; Kim, Y. C. ; Brandt, J. ; Yi, J. ; Yong, A. S. C. ; Kritharides, L. ; Simmons, A. ; Barber, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-48082ce32e3a1e8f7e7719a875da406e529e7eabefaef0f89707cf76493bf4aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Arrhythmia</topic><topic>Atherosclerosis</topic><topic>Bridge loads</topic><topic>Congenital anomalies</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow visualization</topic><topic>Fluid- and Aerodynamics</topic><topic>Guide wires</topic><topic>Heat and Mass Transfer</topic><topic>Hemodynamics</topic><topic>In vivo methods and tests</topic><topic>Inserts</topic><topic>Ischemia</topic><topic>Lesions</topic><topic>Muscles</topic><topic>Proportional integral derivative</topic><topic>Research Article</topic><topic>Segments</topic><topic>Systole</topic><topic>Three dimensional printing</topic><topic>Upstream</topic><topic>Veins &amp; arteries</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayaratnam, P. R. S.</creatorcontrib><creatorcontrib>Fulker, D.</creatorcontrib><creatorcontrib>Kim, Y. C.</creatorcontrib><creatorcontrib>Brandt, J.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yong, A. S. C.</creatorcontrib><creatorcontrib>Kritharides, L.</creatorcontrib><creatorcontrib>Simmons, A.</creatorcontrib><creatorcontrib>Barber, T. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayaratnam, P. R. S.</au><au>Fulker, D.</au><au>Kim, Y. C.</au><au>Brandt, J.</au><au>Yi, J.</au><au>Yong, A. S. C.</au><au>Kritharides, L.</au><au>Simmons, A.</au><au>Barber, T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the haemodynamics of myocardial bridging</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>62</volume><issue>4</issue><artnum>86</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>Myocardial bridging is a congenital anomaly wherein a segment of a coronary artery passes under a ‘bridge’ of heart muscle rather than resting upon the heart’s surface. Although it is usually benign, myocardial bridging has been associated with adverse clinical events including ischaemia, arrhythmia and sudden death. Moreover, there is a tendency for atherosclerotic lesions to develop upstream of the bridge. These lesions may be the result of adverse fluid dynamic phenomena induced by the periodic compression of the artery by the overlying myocardial bridge. It is not possible to visualise these phenomena in vivo, and in this study we present an in vitro model capable of replicating the bridging conditions. This model is comprised of a pressure-measuring guide wire and catheter, a piston pump, a scaled artery model, and a ‘myocardial bridging mechanism’ which periodically compresses the artery model. A proportional-integral-derivative (PID) controller allowed the piston pump to recreate a patient-specific aortic pressure waveform upstream of the occluded artery model segment for each study. Stationary occlusions—achieved by placing 3D printed ‘stenosis inserts’ within the artery model—induced globally reduced pressures downstream of the stenosis when compared against the upstream pressure waveform. Conversely, the pressures downstream of the dynamic stenoses generated by the bridging mechanism closely matched the upstream pressures at all stages of the cardiac cycle except at the end of systole. This divergent pressure behaviour at the end of systole was similarly observed in vivo within a patient with a myocardial bridge. Flow visualisation using a laser sheet enabled dynamic flow structures to be observed, including recirculating flow regions, which may be precursors to arterial dysfunction. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-021-03185-9</doi><orcidid>https://orcid.org/0000-0002-1219-0169</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2021-04, Vol.62 (4), Article 86
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2507988693
source SpringerLink Journals
subjects Aorta
Arrhythmia
Atherosclerosis
Bridge loads
Congenital anomalies
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow visualization
Fluid- and Aerodynamics
Guide wires
Heat and Mass Transfer
Hemodynamics
In vivo methods and tests
Inserts
Ischemia
Lesions
Muscles
Proportional integral derivative
Research Article
Segments
Systole
Three dimensional printing
Upstream
Veins & arteries
Waveforms
title Investigating the haemodynamics of myocardial bridging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20haemodynamics%20of%20myocardial%20bridging&rft.jtitle=Experiments%20in%20fluids&rft.au=Vijayaratnam,%20P.%20R.%20S.&rft.date=2021-04-01&rft.volume=62&rft.issue=4&rft.artnum=86&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-021-03185-9&rft_dat=%3Cproquest_cross%3E2507988693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507988693&rft_id=info:pmid/&rfr_iscdi=true