Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

Substructured domain decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS, and we discuss its advantages compared to the standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Chaouqui, Faycal, Gander, Martin J, Kumbhar, Pratik M, Vanzan, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chaouqui, Faycal
Gander, Martin J
Kumbhar, Pratik M
Vanzan, Tommaso
description Substructured domain decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS, and we discuss its advantages compared to the standard volume formulation of the Schwarz method when they are used both as iterative solvers and preconditioners for a Krylov method. To extend SRAS to nonlinear problems, we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton's method. We study carefully the impact of substructuring on the convergence and performance of these methods as well as their implementations. We finally introduce two-level versions of nonlinear SRAS and SRASPEN. Numerical experiments confirm the advantages of formulating a Schwarz method at the substructured level.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2507817881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507817881</sourcerecordid><originalsourceid>FETCH-proquest_journals_25078178813</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdSBNrsxVRXLhSt1JiEjWl3NQ8FPx64-MDXM0MczgDlFHGyoLPKB2h3PuWEELnNa0qlqHj1oAWDgtQGCx03-XjyQcXZYhOK7zTaRgZUl0oZYK5a7yX14dwT2yCdiIYC_6j6J2WFt6MBQOXCRqeRed1_ssxmq5Xh-Wm6J29xaRtWhsdpKuhFal5WXNesv-oF8GbRTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507817881</pqid></control><display><type>article</type><title>Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning</title><source>Free E- Journals</source><creator>Chaouqui, Faycal ; Gander, Martin J ; Kumbhar, Pratik M ; Vanzan, Tommaso</creator><creatorcontrib>Chaouqui, Faycal ; Gander, Martin J ; Kumbhar, Pratik M ; Vanzan, Tommaso</creatorcontrib><description>Substructured domain decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS, and we discuss its advantages compared to the standard volume formulation of the Schwarz method when they are used both as iterative solvers and preconditioners for a Krylov method. To extend SRAS to nonlinear problems, we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton's method. We study carefully the impact of substructuring on the convergence and performance of these methods as well as their implementations. We finally introduce two-level versions of nonlinear SRAS and SRASPEN. Numerical experiments confirm the advantages of formulating a Schwarz method at the substructured level.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Domain decomposition methods ; Iterative methods ; Newton methods ; Preconditioning</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Chaouqui, Faycal</creatorcontrib><creatorcontrib>Gander, Martin J</creatorcontrib><creatorcontrib>Kumbhar, Pratik M</creatorcontrib><creatorcontrib>Vanzan, Tommaso</creatorcontrib><title>Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning</title><title>arXiv.org</title><description>Substructured domain decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS, and we discuss its advantages compared to the standard volume formulation of the Schwarz method when they are used both as iterative solvers and preconditioners for a Krylov method. To extend SRAS to nonlinear problems, we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton's method. We study carefully the impact of substructuring on the convergence and performance of these methods as well as their implementations. We finally introduce two-level versions of nonlinear SRAS and SRASPEN. Numerical experiments confirm the advantages of formulating a Schwarz method at the substructured level.</description><subject>Domain decomposition methods</subject><subject>Iterative methods</subject><subject>Newton methods</subject><subject>Preconditioning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdSBNrsxVRXLhSt1JiEjWl3NQ8FPx64-MDXM0MczgDlFHGyoLPKB2h3PuWEELnNa0qlqHj1oAWDgtQGCx03-XjyQcXZYhOK7zTaRgZUl0oZYK5a7yX14dwT2yCdiIYC_6j6J2WFt6MBQOXCRqeRed1_ssxmq5Xh-Wm6J29xaRtWhsdpKuhFal5WXNesv-oF8GbRTk</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Chaouqui, Faycal</creator><creator>Gander, Martin J</creator><creator>Kumbhar, Pratik M</creator><creator>Vanzan, Tommaso</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210331</creationdate><title>Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning</title><author>Chaouqui, Faycal ; Gander, Martin J ; Kumbhar, Pratik M ; Vanzan, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25078178813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Domain decomposition methods</topic><topic>Iterative methods</topic><topic>Newton methods</topic><topic>Preconditioning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaouqui, Faycal</creatorcontrib><creatorcontrib>Gander, Martin J</creatorcontrib><creatorcontrib>Kumbhar, Pratik M</creatorcontrib><creatorcontrib>Vanzan, Tommaso</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaouqui, Faycal</au><au>Gander, Martin J</au><au>Kumbhar, Pratik M</au><au>Vanzan, Tommaso</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning</atitle><jtitle>arXiv.org</jtitle><date>2021-03-31</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Substructured domain decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS, and we discuss its advantages compared to the standard volume formulation of the Schwarz method when they are used both as iterative solvers and preconditioners for a Krylov method. To extend SRAS to nonlinear problems, we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton's method. We study carefully the impact of substructuring on the convergence and performance of these methods as well as their implementations. We finally introduce two-level versions of nonlinear SRAS and SRASPEN. Numerical experiments confirm the advantages of formulating a Schwarz method at the substructured level.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2507817881
source Free E- Journals
subjects Domain decomposition methods
Iterative methods
Newton methods
Preconditioning
title Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Linear%20and%20nonlinear%20substructured%20Restricted%20Additive%20Schwarz%20iterations%20and%20preconditioning&rft.jtitle=arXiv.org&rft.au=Chaouqui,%20Faycal&rft.date=2021-03-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2507817881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507817881&rft_id=info:pmid/&rfr_iscdi=true