Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations

Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions (2D and 3D), that the spatiotemporal evolution of antibubbles can be described n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Pal, Nairita, Ramadugu, Rashmi, Prasad Perlekar, Pandit, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pal, Nairita
Ramadugu, Rashmi
Prasad Perlekar
Pandit, Rahul
description Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions (2D and 3D), that the spatiotemporal evolution of antibubbles can be described naturally by the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations for a binary fluid. Our DNSs capture elegantly the gravity-induced thinning and breakup of an antibubble via the time evolution of the Cahn-Hilliard scalar order parameter field \(\phi\), which varies continuously across interfaces, so we do not have to enforce complicated boundary conditions at the moving antibubble interfaces. To ensure that our results are robust, we supplement our CHNS simulations with sharp-interface Volume-of-Fluid (VoF) DNSs. We track the thickness of the antibubble and calculate the dependence of the lifetime of an antibubble on several parameters; we show that our DNS results agree with various experimental results; in particular, the velocity with which the arms of the antibubble retract after breakup scales as \(\sigma^{1/2}\), where \(\sigma\) is the surface tension.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2507812704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507812704</sourcerecordid><originalsourceid>FETCH-proquest_journals_25078127043</originalsourceid><addsrcrecordid>eNqNi8sKgkAYRocgSMp3GGgtjP9oSrsoo1UQtheVkUbm1lx6_kboAVp98J1zVigBSvOsLgA2KHVuJoTAoYKypAl6NObFJLO9wCfl-RCGQTB3xK3pPdeeSaMX1ny0CPFQeLJa4gu3bPT4HmLJx8hbLoNYCuV2aD31wrH0t1u0vzbP8y0zVr8Dc76bdbAqog5KUtU5VKSg_1lfChhAFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507812704</pqid></control><display><type>article</type><title>Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations</title><source>Free E- Journals</source><creator>Pal, Nairita ; Ramadugu, Rashmi ; Prasad Perlekar ; Pandit, Rahul</creator><creatorcontrib>Pal, Nairita ; Ramadugu, Rashmi ; Prasad Perlekar ; Pandit, Rahul</creatorcontrib><description>Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions (2D and 3D), that the spatiotemporal evolution of antibubbles can be described naturally by the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations for a binary fluid. Our DNSs capture elegantly the gravity-induced thinning and breakup of an antibubble via the time evolution of the Cahn-Hilliard scalar order parameter field \(\phi\), which varies continuously across interfaces, so we do not have to enforce complicated boundary conditions at the moving antibubble interfaces. To ensure that our results are robust, we supplement our CHNS simulations with sharp-interface Volume-of-Fluid (VoF) DNSs. We track the thickness of the antibubble and calculate the dependence of the lifetime of an antibubble on several parameters; we show that our DNS results agree with various experimental results; in particular, the velocity with which the arms of the antibubble retract after breakup scales as \(\sigma^{1/2}\), where \(\sigma\) is the surface tension.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary fluids ; Boundary conditions ; Computational fluid dynamics ; Density ; Direct numerical simulation ; Evolution ; Order parameters ; Robustness (mathematics) ; Simulation ; Surface tension</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pal, Nairita</creatorcontrib><creatorcontrib>Ramadugu, Rashmi</creatorcontrib><creatorcontrib>Prasad Perlekar</creatorcontrib><creatorcontrib>Pandit, Rahul</creatorcontrib><title>Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations</title><title>arXiv.org</title><description>Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions (2D and 3D), that the spatiotemporal evolution of antibubbles can be described naturally by the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations for a binary fluid. Our DNSs capture elegantly the gravity-induced thinning and breakup of an antibubble via the time evolution of the Cahn-Hilliard scalar order parameter field \(\phi\), which varies continuously across interfaces, so we do not have to enforce complicated boundary conditions at the moving antibubble interfaces. To ensure that our results are robust, we supplement our CHNS simulations with sharp-interface Volume-of-Fluid (VoF) DNSs. We track the thickness of the antibubble and calculate the dependence of the lifetime of an antibubble on several parameters; we show that our DNS results agree with various experimental results; in particular, the velocity with which the arms of the antibubble retract after breakup scales as \(\sigma^{1/2}\), where \(\sigma\) is the surface tension.</description><subject>Binary fluids</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Direct numerical simulation</subject><subject>Evolution</subject><subject>Order parameters</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Surface tension</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAYRocgSMp3GGgtjP9oSrsoo1UQtheVkUbm1lx6_kboAVp98J1zVigBSvOsLgA2KHVuJoTAoYKypAl6NObFJLO9wCfl-RCGQTB3xK3pPdeeSaMX1ny0CPFQeLJa4gu3bPT4HmLJx8hbLoNYCuV2aD31wrH0t1u0vzbP8y0zVr8Dc76bdbAqog5KUtU5VKSg_1lfChhAFg</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Pal, Nairita</creator><creator>Ramadugu, Rashmi</creator><creator>Prasad Perlekar</creator><creator>Pandit, Rahul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210331</creationdate><title>Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations</title><author>Pal, Nairita ; Ramadugu, Rashmi ; Prasad Perlekar ; Pandit, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25078127043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary fluids</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Direct numerical simulation</topic><topic>Evolution</topic><topic>Order parameters</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Surface tension</topic><toplevel>online_resources</toplevel><creatorcontrib>Pal, Nairita</creatorcontrib><creatorcontrib>Ramadugu, Rashmi</creatorcontrib><creatorcontrib>Prasad Perlekar</creatorcontrib><creatorcontrib>Pandit, Rahul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Nairita</au><au>Ramadugu, Rashmi</au><au>Prasad Perlekar</au><au>Pandit, Rahul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations</atitle><jtitle>arXiv.org</jtitle><date>2021-03-31</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Antibubbles, which consist of a shell of a low-density fluid inside a high-density fluid, have several promising applications. We show, via extensive direct numerical simulations (DNSs), in both two and three dimensions (2D and 3D), that the spatiotemporal evolution of antibubbles can be described naturally by the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations for a binary fluid. Our DNSs capture elegantly the gravity-induced thinning and breakup of an antibubble via the time evolution of the Cahn-Hilliard scalar order parameter field \(\phi\), which varies continuously across interfaces, so we do not have to enforce complicated boundary conditions at the moving antibubble interfaces. To ensure that our results are robust, we supplement our CHNS simulations with sharp-interface Volume-of-Fluid (VoF) DNSs. We track the thickness of the antibubble and calculate the dependence of the lifetime of an antibubble on several parameters; we show that our DNS results agree with various experimental results; in particular, the velocity with which the arms of the antibubble retract after breakup scales as \(\sigma^{1/2}\), where \(\sigma\) is the surface tension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2507812704
source Free E- Journals
subjects Binary fluids
Boundary conditions
Computational fluid dynamics
Density
Direct numerical simulation
Evolution
Order parameters
Robustness (mathematics)
Simulation
Surface tension
title Ephemeral Antibubbles: Spatiotemporal Evolution from Direct Numerical Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ephemeral%20Antibubbles:%20Spatiotemporal%20Evolution%20from%20Direct%20Numerical%20Simulations&rft.jtitle=arXiv.org&rft.au=Pal,%20Nairita&rft.date=2021-03-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2507812704%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507812704&rft_id=info:pmid/&rfr_iscdi=true