The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions

The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2021-04, Vol.15 (3)
Hauptverfasser: Sadullaev, Azimbay, Shopulatov, Shomurod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Complex analysis and operator theory
container_volume 15
creator Sadullaev, Azimbay
Shopulatov, Shomurod
description The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain D ⊂ R n function u ( x ), u ( x ) ≢ - ∞ , is subharmonic if and only if △ ¯ u ( x ) ≥ 0 ∀ x 0 ∈ D \ u - ∞ . One of the notable results is Privalov’s theorem, where he got more deeper result with an exceptional set E : if the function u ( x ), u ( x ) ≢ - ∞ , is upper semi-continuous in the domain D ⊂ R n and the following two conditions hold: △ ¯ B u ( x 0 ) ≥ 0 ∀ x 0 ∈ D \ [ E ∪ u - ∞ ] , where E ⊂ D is a closed in D set, m e s E = 0 ; △ ¯ B u ( x 0 ) > - ∞ ∀ x 0 ∈ E \ P , where P ⊂ E is some polar set. Then the function u ( x ) is subharmonic in D . The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called S ̲ and S ¯ singular-sets, which are directly related to the exceptional set of I. Privalov. We prove: E ∈ S ̲ if and only if m e s E = 0 ; E ∈ S ¯ if and only if E ∘ = ∅ .
doi_str_mv 10.1007/s11785-021-01102-w
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2507708825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507708825</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-9a8f6b67861b355a379c59b39ef707ae0299f7aeb6dbff24f407437f66e4b6083</originalsourceid><addsrcrecordid>eNpFkN9KwzAUh4MoOKcv4FXA6-hJ2ibNpQynwmDg5nVJumTr6JqapO7KZ_IdfDIzJ3r1Oxy-84cPoWsKtxRA3AVKRVkQYJQApcDI_gSNKOeUlIyz07-6yM_RRQhbAA5CyhH6WG4MfjSd8aptglnhmepbVRs871MrOo9Vt8IxQUvXu9atm1q1eLJRXtXR-CbEpsbO4hezc-9KtwYvvj4xwYumWw-t8nhhYjgAi0GnoZ3rEj8dujo2rguX6MyqNpir3xyj1-nDcvJEZvPH58n9jPSMiUikKi3XXJSc6qwoVCZkXUidSWMFCGWASWlTar7S1rLc5iDyTFjOTa45lNkY3Rz39t69DSbEausG36WTFStACCiTmkRlRyr0Pr1v_D9FoTp4ro6eq-S5-vFc7bNvH01ylg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507708825</pqid></control><display><type>article</type><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadullaev, Azimbay ; Shopulatov, Shomurod</creator><creatorcontrib>Sadullaev, Azimbay ; Shopulatov, Shomurod</creatorcontrib><description>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain D ⊂ R n function u ( x ), u ( x ) ≢ - ∞ , is subharmonic if and only if △ ¯ u ( x ) ≥ 0 ∀ x 0 ∈ D \ u - ∞ . One of the notable results is Privalov’s theorem, where he got more deeper result with an exceptional set E : if the function u ( x ), u ( x ) ≢ - ∞ , is upper semi-continuous in the domain D ⊂ R n and the following two conditions hold: △ ¯ B u ( x 0 ) ≥ 0 ∀ x 0 ∈ D \ [ E ∪ u - ∞ ] , where E ⊂ D is a closed in D set, m e s E = 0 ; △ ¯ B u ( x 0 ) &gt; - ∞ ∀ x 0 ∈ E \ P , where P ⊂ E is some polar set. Then the function u ( x ) is subharmonic in D . The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called S ̲ and S ¯ singular-sets, which are directly related to the exceptional set of I. Privalov. We prove: E ∈ S ̲ if and only if m e s E = 0 ; E ∈ S ¯ if and only if E ∘ = ∅ .</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-021-01102-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Domains ; Harmonic functions ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Theorems</subject><ispartof>Complex analysis and operator theory, 2021-04, Vol.15 (3)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0268-6478 ; 0000-0003-4188-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-021-01102-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-021-01102-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sadullaev, Azimbay</creatorcontrib><creatorcontrib>Shopulatov, Shomurod</creatorcontrib><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain D ⊂ R n function u ( x ), u ( x ) ≢ - ∞ , is subharmonic if and only if △ ¯ u ( x ) ≥ 0 ∀ x 0 ∈ D \ u - ∞ . One of the notable results is Privalov’s theorem, where he got more deeper result with an exceptional set E : if the function u ( x ), u ( x ) ≢ - ∞ , is upper semi-continuous in the domain D ⊂ R n and the following two conditions hold: △ ¯ B u ( x 0 ) ≥ 0 ∀ x 0 ∈ D \ [ E ∪ u - ∞ ] , where E ⊂ D is a closed in D set, m e s E = 0 ; △ ¯ B u ( x 0 ) &gt; - ∞ ∀ x 0 ∈ E \ P , where P ⊂ E is some polar set. Then the function u ( x ) is subharmonic in D . The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called S ̲ and S ¯ singular-sets, which are directly related to the exceptional set of I. Privalov. We prove: E ∈ S ̲ if and only if m e s E = 0 ; E ∈ S ¯ if and only if E ∘ = ∅ .</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Domains</subject><subject>Harmonic functions</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkN9KwzAUh4MoOKcv4FXA6-hJ2ibNpQynwmDg5nVJumTr6JqapO7KZ_IdfDIzJ3r1Oxy-84cPoWsKtxRA3AVKRVkQYJQApcDI_gSNKOeUlIyz07-6yM_RRQhbAA5CyhH6WG4MfjSd8aptglnhmepbVRs871MrOo9Vt8IxQUvXu9atm1q1eLJRXtXR-CbEpsbO4hezc-9KtwYvvj4xwYumWw-t8nhhYjgAi0GnoZ3rEj8dujo2rguX6MyqNpir3xyj1-nDcvJEZvPH58n9jPSMiUikKi3XXJSc6qwoVCZkXUidSWMFCGWASWlTar7S1rLc5iDyTFjOTa45lNkY3Rz39t69DSbEausG36WTFStACCiTmkRlRyr0Pr1v_D9FoTp4ro6eq-S5-vFc7bNvH01ylg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sadullaev, Azimbay</creator><creator>Shopulatov, Shomurod</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0268-6478</orcidid><orcidid>https://orcid.org/0000-0003-4188-1732</orcidid></search><sort><creationdate>20210401</creationdate><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><author>Sadullaev, Azimbay ; Shopulatov, Shomurod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-9a8f6b67861b355a379c59b39ef707ae0299f7aeb6dbff24f407437f66e4b6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Domains</topic><topic>Harmonic functions</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadullaev, Azimbay</creatorcontrib><creatorcontrib>Shopulatov, Shomurod</creatorcontrib><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadullaev, Azimbay</au><au>Shopulatov, Shomurod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain D ⊂ R n function u ( x ), u ( x ) ≢ - ∞ , is subharmonic if and only if △ ¯ u ( x ) ≥ 0 ∀ x 0 ∈ D \ u - ∞ . One of the notable results is Privalov’s theorem, where he got more deeper result with an exceptional set E : if the function u ( x ), u ( x ) ≢ - ∞ , is upper semi-continuous in the domain D ⊂ R n and the following two conditions hold: △ ¯ B u ( x 0 ) ≥ 0 ∀ x 0 ∈ D \ [ E ∪ u - ∞ ] , where E ⊂ D is a closed in D set, m e s E = 0 ; △ ¯ B u ( x 0 ) &gt; - ∞ ∀ x 0 ∈ E \ P , where P ⊂ E is some polar set. Then the function u ( x ) is subharmonic in D . The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called S ̲ and S ¯ singular-sets, which are directly related to the exceptional set of I. Privalov. We prove: E ∈ S ̲ if and only if m e s E = 0 ; E ∈ S ¯ if and only if E ∘ = ∅ .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-021-01102-w</doi><orcidid>https://orcid.org/0000-0002-0268-6478</orcidid><orcidid>https://orcid.org/0000-0003-4188-1732</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2021-04, Vol.15 (3)
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2507708825
source SpringerLink Journals - AutoHoldings
subjects Analysis
Differential equations
Domains
Harmonic functions
Laplace transforms
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
Theorems
title The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalised%20Laplace%20Operator%20and%20the%20Topological%20Characteristic%20of%20Removable%20S%C2%AF%20-%20Singular%20Sets%20of%20Subharmonic%20Functions&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Sadullaev,%20Azimbay&rft.date=2021-04-01&rft.volume=15&rft.issue=3&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-021-01102-w&rft_dat=%3Cproquest_sprin%3E2507708825%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507708825&rft_id=info:pmid/&rfr_iscdi=true