The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions
The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of t...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2021-04, Vol.15 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Complex analysis and operator theory |
container_volume | 15 |
creator | Sadullaev, Azimbay Shopulatov, Shomurod |
description | The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain
D
⊂
R
n
function
u
(
x
),
u
(
x
)
≢
-
∞
,
is subharmonic if and only if
△
¯
u
(
x
)
≥
0
∀
x
0
∈
D
\
u
-
∞
.
One of the notable results is Privalov’s theorem, where he got more deeper result with an
exceptional
set
E
: if the function
u
(
x
),
u
(
x
)
≢
-
∞
, is upper semi-continuous in the domain
D
⊂
R
n
and the following two conditions hold:
△
¯
B
u
(
x
0
)
≥
0
∀
x
0
∈
D
\
[
E
∪
u
-
∞
]
, where
E
⊂
D
is a closed in
D
set,
m
e
s
E
=
0
;
△
¯
B
u
(
x
0
)
>
-
∞
∀
x
0
∈
E
\
P
,
where
P
⊂
E
is some polar set.
Then the function
u
(
x
) is subharmonic in
D
. The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called
S
̲
and
S
¯
singular-sets, which are directly related to the exceptional set of I. Privalov. We prove:
E
∈
S
̲
if and only if
m
e
s
E
=
0
;
E
∈
S
¯
if and only if
E
∘
=
∅
. |
doi_str_mv | 10.1007/s11785-021-01102-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2507708825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507708825</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-9a8f6b67861b355a379c59b39ef707ae0299f7aeb6dbff24f407437f66e4b6083</originalsourceid><addsrcrecordid>eNpFkN9KwzAUh4MoOKcv4FXA6-hJ2ibNpQynwmDg5nVJumTr6JqapO7KZ_IdfDIzJ3r1Oxy-84cPoWsKtxRA3AVKRVkQYJQApcDI_gSNKOeUlIyz07-6yM_RRQhbAA5CyhH6WG4MfjSd8aptglnhmepbVRs871MrOo9Vt8IxQUvXu9atm1q1eLJRXtXR-CbEpsbO4hezc-9KtwYvvj4xwYumWw-t8nhhYjgAi0GnoZ3rEj8dujo2rguX6MyqNpir3xyj1-nDcvJEZvPH58n9jPSMiUikKi3XXJSc6qwoVCZkXUidSWMFCGWASWlTar7S1rLc5iDyTFjOTa45lNkY3Rz39t69DSbEausG36WTFStACCiTmkRlRyr0Pr1v_D9FoTp4ro6eq-S5-vFc7bNvH01ylg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507708825</pqid></control><display><type>article</type><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadullaev, Azimbay ; Shopulatov, Shomurod</creator><creatorcontrib>Sadullaev, Azimbay ; Shopulatov, Shomurod</creatorcontrib><description>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain
D
⊂
R
n
function
u
(
x
),
u
(
x
)
≢
-
∞
,
is subharmonic if and only if
△
¯
u
(
x
)
≥
0
∀
x
0
∈
D
\
u
-
∞
.
One of the notable results is Privalov’s theorem, where he got more deeper result with an
exceptional
set
E
: if the function
u
(
x
),
u
(
x
)
≢
-
∞
, is upper semi-continuous in the domain
D
⊂
R
n
and the following two conditions hold:
△
¯
B
u
(
x
0
)
≥
0
∀
x
0
∈
D
\
[
E
∪
u
-
∞
]
, where
E
⊂
D
is a closed in
D
set,
m
e
s
E
=
0
;
△
¯
B
u
(
x
0
)
>
-
∞
∀
x
0
∈
E
\
P
,
where
P
⊂
E
is some polar set.
Then the function
u
(
x
) is subharmonic in
D
. The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called
S
̲
and
S
¯
singular-sets, which are directly related to the exceptional set of I. Privalov. We prove:
E
∈
S
̲
if and only if
m
e
s
E
=
0
;
E
∈
S
¯
if and only if
E
∘
=
∅
.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-021-01102-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Domains ; Harmonic functions ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Theorems</subject><ispartof>Complex analysis and operator theory, 2021-04, Vol.15 (3)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0268-6478 ; 0000-0003-4188-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-021-01102-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-021-01102-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sadullaev, Azimbay</creatorcontrib><creatorcontrib>Shopulatov, Shomurod</creatorcontrib><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain
D
⊂
R
n
function
u
(
x
),
u
(
x
)
≢
-
∞
,
is subharmonic if and only if
△
¯
u
(
x
)
≥
0
∀
x
0
∈
D
\
u
-
∞
.
One of the notable results is Privalov’s theorem, where he got more deeper result with an
exceptional
set
E
: if the function
u
(
x
),
u
(
x
)
≢
-
∞
, is upper semi-continuous in the domain
D
⊂
R
n
and the following two conditions hold:
△
¯
B
u
(
x
0
)
≥
0
∀
x
0
∈
D
\
[
E
∪
u
-
∞
]
, where
E
⊂
D
is a closed in
D
set,
m
e
s
E
=
0
;
△
¯
B
u
(
x
0
)
>
-
∞
∀
x
0
∈
E
\
P
,
where
P
⊂
E
is some polar set.
Then the function
u
(
x
) is subharmonic in
D
. The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called
S
̲
and
S
¯
singular-sets, which are directly related to the exceptional set of I. Privalov. We prove:
E
∈
S
̲
if and only if
m
e
s
E
=
0
;
E
∈
S
¯
if and only if
E
∘
=
∅
.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Domains</subject><subject>Harmonic functions</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkN9KwzAUh4MoOKcv4FXA6-hJ2ibNpQynwmDg5nVJumTr6JqapO7KZ_IdfDIzJ3r1Oxy-84cPoWsKtxRA3AVKRVkQYJQApcDI_gSNKOeUlIyz07-6yM_RRQhbAA5CyhH6WG4MfjSd8aptglnhmepbVRs871MrOo9Vt8IxQUvXu9atm1q1eLJRXtXR-CbEpsbO4hezc-9KtwYvvj4xwYumWw-t8nhhYjgAi0GnoZ3rEj8dujo2rguX6MyqNpir3xyj1-nDcvJEZvPH58n9jPSMiUikKi3XXJSc6qwoVCZkXUidSWMFCGWASWlTar7S1rLc5iDyTFjOTa45lNkY3Rz39t69DSbEausG36WTFStACCiTmkRlRyr0Pr1v_D9FoTp4ro6eq-S5-vFc7bNvH01ylg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sadullaev, Azimbay</creator><creator>Shopulatov, Shomurod</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0268-6478</orcidid><orcidid>https://orcid.org/0000-0003-4188-1732</orcidid></search><sort><creationdate>20210401</creationdate><title>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</title><author>Sadullaev, Azimbay ; Shopulatov, Shomurod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-9a8f6b67861b355a379c59b39ef707ae0299f7aeb6dbff24f407437f66e4b6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Domains</topic><topic>Harmonic functions</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadullaev, Azimbay</creatorcontrib><creatorcontrib>Shopulatov, Shomurod</creatorcontrib><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadullaev, Azimbay</au><au>Shopulatov, Shomurod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>The class of harmonic and subharmonic functions have been studied by many authors, defined in different ways, by the Laplace differential operator, averaging, generalised Laplace operators, etc. The well-known theorem of Blaschke-Privalov gives an excellent criterion for subharmonicity in terms of the generalised Laplace operators: an upper semi-continuous in the domain
D
⊂
R
n
function
u
(
x
),
u
(
x
)
≢
-
∞
,
is subharmonic if and only if
△
¯
u
(
x
)
≥
0
∀
x
0
∈
D
\
u
-
∞
.
One of the notable results is Privalov’s theorem, where he got more deeper result with an
exceptional
set
E
: if the function
u
(
x
),
u
(
x
)
≢
-
∞
, is upper semi-continuous in the domain
D
⊂
R
n
and the following two conditions hold:
△
¯
B
u
(
x
0
)
≥
0
∀
x
0
∈
D
\
[
E
∪
u
-
∞
]
, where
E
⊂
D
is a closed in
D
set,
m
e
s
E
=
0
;
△
¯
B
u
(
x
0
)
>
-
∞
∀
x
0
∈
E
\
P
,
where
P
⊂
E
is some polar set.
Then the function
u
(
x
) is subharmonic in
D
. The purpose of this paper is to characterise completely this type of exceptional sets. For this, we introduce the so-called
S
̲
and
S
¯
singular-sets, which are directly related to the exceptional set of I. Privalov. We prove:
E
∈
S
̲
if and only if
m
e
s
E
=
0
;
E
∈
S
¯
if and only if
E
∘
=
∅
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-021-01102-w</doi><orcidid>https://orcid.org/0000-0002-0268-6478</orcidid><orcidid>https://orcid.org/0000-0003-4188-1732</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8254 |
ispartof | Complex analysis and operator theory, 2021-04, Vol.15 (3) |
issn | 1661-8254 1661-8262 |
language | eng |
recordid | cdi_proquest_journals_2507708825 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Differential equations Domains Harmonic functions Laplace transforms Mathematics Mathematics and Statistics Operator Theory Operators (mathematics) Theorems |
title | The Generalised Laplace Operator and the Topological Characteristic of Removable S¯ - Singular Sets of Subharmonic Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalised%20Laplace%20Operator%20and%20the%20Topological%20Characteristic%20of%20Removable%20S%C2%AF%20-%20Singular%20Sets%20of%20Subharmonic%20Functions&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Sadullaev,%20Azimbay&rft.date=2021-04-01&rft.volume=15&rft.issue=3&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-021-01102-w&rft_dat=%3Cproquest_sprin%3E2507708825%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507708825&rft_id=info:pmid/&rfr_iscdi=true |