Percolation and Epidemic Processes in One-Dimensional Small-World Networks

We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the \emph{Independent Cascade} process and the \emph{Reed-Frost} process in such graphs. These are the first fully rigorous results establishing a phase transi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Becchetti, Luca, Clementi, Andrea, Denni, Riccardo, Pasquale, Francesco, Trevisan, Luca, Ziccardi, Isabella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Becchetti, Luca
Clementi, Andrea
Denni, Riccardo
Pasquale, Francesco
Trevisan, Luca
Ziccardi, Isabella
description We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the \emph{Independent Cascade} process and the \emph{Reed-Frost} process in such graphs. These are the first fully rigorous results establishing a phase transition for bond percolation and SIR epidemic processes in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemiological phenomena emerge from our analysis, including the epidemic spread through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2507370785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507370785</sourcerecordid><originalsourceid>FETCH-proquest_journals_25073707853</originalsourceid><addsrcrecordid>eNqNy7EKwjAUQNEgCBbtPwScAzExprtWxEELCo4lpE9ITZOa1-Lv28EPcLrLuTOSCSk3rNgKsSA5Yss5FzstlJIZOVeQbPRmcDFQExpa9q6BzllapWgBEZC6QK8B2MF1EHByxtNbZ7xnj5h8Qy8wfGJ64YrMn8Yj5L8uyfpY3vcn1qf4HgGHuo1jmm6sheJaaq4LJf9TX70oPLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507370785</pqid></control><display><type>article</type><title>Percolation and Epidemic Processes in One-Dimensional Small-World Networks</title><source>Free E- Journals</source><creator>Becchetti, Luca ; Clementi, Andrea ; Denni, Riccardo ; Pasquale, Francesco ; Trevisan, Luca ; Ziccardi, Isabella</creator><creatorcontrib>Becchetti, Luca ; Clementi, Andrea ; Denni, Riccardo ; Pasquale, Francesco ; Trevisan, Luca ; Ziccardi, Isabella</creatorcontrib><description>We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the \emph{Independent Cascade} process and the \emph{Reed-Frost} process in such graphs. These are the first fully rigorous results establishing a phase transition for bond percolation and SIR epidemic processes in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemiological phenomena emerge from our analysis, including the epidemic spread through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Epidemics ; Epidemiology ; Graphs ; Mathematical models ; Nodes ; Percolation ; Phase transitions ; Qualitative analysis ; Thresholds</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Becchetti, Luca</creatorcontrib><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Denni, Riccardo</creatorcontrib><creatorcontrib>Pasquale, Francesco</creatorcontrib><creatorcontrib>Trevisan, Luca</creatorcontrib><creatorcontrib>Ziccardi, Isabella</creatorcontrib><title>Percolation and Epidemic Processes in One-Dimensional Small-World Networks</title><title>arXiv.org</title><description>We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the \emph{Independent Cascade} process and the \emph{Reed-Frost} process in such graphs. These are the first fully rigorous results establishing a phase transition for bond percolation and SIR epidemic processes in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemiological phenomena emerge from our analysis, including the epidemic spread through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.</description><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Nodes</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Qualitative analysis</subject><subject>Thresholds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy7EKwjAUQNEgCBbtPwScAzExprtWxEELCo4lpE9ITZOa1-Lv28EPcLrLuTOSCSk3rNgKsSA5Yss5FzstlJIZOVeQbPRmcDFQExpa9q6BzllapWgBEZC6QK8B2MF1EHByxtNbZ7xnj5h8Qy8wfGJ64YrMn8Yj5L8uyfpY3vcn1qf4HgGHuo1jmm6sheJaaq4LJf9TX70oPLU</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Becchetti, Luca</creator><creator>Clementi, Andrea</creator><creator>Denni, Riccardo</creator><creator>Pasquale, Francesco</creator><creator>Trevisan, Luca</creator><creator>Ziccardi, Isabella</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220321</creationdate><title>Percolation and Epidemic Processes in One-Dimensional Small-World Networks</title><author>Becchetti, Luca ; Clementi, Andrea ; Denni, Riccardo ; Pasquale, Francesco ; Trevisan, Luca ; Ziccardi, Isabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25073707853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Nodes</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Qualitative analysis</topic><topic>Thresholds</topic><toplevel>online_resources</toplevel><creatorcontrib>Becchetti, Luca</creatorcontrib><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Denni, Riccardo</creatorcontrib><creatorcontrib>Pasquale, Francesco</creatorcontrib><creatorcontrib>Trevisan, Luca</creatorcontrib><creatorcontrib>Ziccardi, Isabella</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becchetti, Luca</au><au>Clementi, Andrea</au><au>Denni, Riccardo</au><au>Pasquale, Francesco</au><au>Trevisan, Luca</au><au>Ziccardi, Isabella</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Percolation and Epidemic Processes in One-Dimensional Small-World Networks</atitle><jtitle>arXiv.org</jtitle><date>2022-03-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the \emph{Independent Cascade} process and the \emph{Reed-Frost} process in such graphs. These are the first fully rigorous results establishing a phase transition for bond percolation and SIR epidemic processes in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemiological phenomena emerge from our analysis, including the epidemic spread through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2507370785
source Free E- Journals
subjects Epidemics
Epidemiology
Graphs
Mathematical models
Nodes
Percolation
Phase transitions
Qualitative analysis
Thresholds
title Percolation and Epidemic Processes in One-Dimensional Small-World Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Percolation%20and%20Epidemic%20Processes%20in%20One-Dimensional%20Small-World%20Networks&rft.jtitle=arXiv.org&rft.au=Becchetti,%20Luca&rft.date=2022-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2507370785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507370785&rft_id=info:pmid/&rfr_iscdi=true