On efficient asymptotic modelling of thin films on thermally conductive substrates

We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-03, Vol.915, Article A133
Hauptverfasser: Allaire, Ryan H., Cummings, Linda J., Kondic, Lou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 915
creator Allaire, Ryan H.
Cummings, Linda J.
Kondic, Lou
description We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the film's material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of-plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a set-up commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered set-up the Marangoni (thermocapillary) effect turns out to be insignificant.
doi_str_mv 10.1017/jfm.2021.157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2507098161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_157</cupid><sourcerecordid>2507098161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-3eeb01d6e2d022a0c0a75b4e0058041956633facb7f87c9be154f4ba3e64e6163</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKd3_oCAt7aepG2yXsrwCwYD0euQpiczo21mkgr793Zs4I1XhwPP-57DQ8gtg5wBkw9b2-ccOMtZJc_IjJWizqQoq3MyA-A8Y4zDJbmKcQvACqjljLyvB4rWOuNwSFTHfb9LPjlDe99i17lhQ72l6csN1Lquj9QP04ah1123p8YP7WiS-0EaxyamoBPGa3JhdRfx5jTn5PP56WP5mq3WL2_Lx1VmCuApKxAbYK1A3k6_aTCgZdWUCFAtoGR1JURRWG0aaRfS1A2yqrRlowsUJQomijm5O_bugv8eMSa19WMYppOKVyChXjDBJur-SJngYwxo1S64Xoe9YqAO1tRkTR2sqcnahOcnXPdNcO0G_1r_DfwC3V9vpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507098161</pqid></control><display><type>article</type><title>On efficient asymptotic modelling of thin films on thermally conductive substrates</title><source>Cambridge University Press Journals Complete</source><creator>Allaire, Ryan H. ; Cummings, Linda J. ; Kondic, Lou</creator><creatorcontrib>Allaire, Ryan H. ; Cummings, Linda J. ; Kondic, Lou</creatorcontrib><description>We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the film's material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of-plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a set-up commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered set-up the Marangoni (thermocapillary) effect turns out to be insignificant.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.157</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Boundary conditions ; Drying ; Evolution ; Film thickness ; Fluid dynamics ; Fluid mechanics ; Free surfaces ; Heat conductivity ; Heat flow ; Heat transfer ; Heat transmission ; JFM Papers ; Laser beam heating ; Lasers ; Liquid phases ; Material properties ; Metal films ; Metals ; Modelling ; Nanotechnology ; Optical properties ; Partial differential equations ; Substrates ; Temperature ; Temperature dependence ; Temperature distribution ; Temperature effects ; Temperature fields ; Thermal analysis ; Thermal conductivity ; Thin films ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2021-03, Vol.915, Article A133</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-3eeb01d6e2d022a0c0a75b4e0058041956633facb7f87c9be154f4ba3e64e6163</citedby><cites>FETCH-LOGICAL-c302t-3eeb01d6e2d022a0c0a75b4e0058041956633facb7f87c9be154f4ba3e64e6163</cites><orcidid>0000-0002-7783-2126 ; 0000-0002-9336-3593 ; 0000-0001-6966-9851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021001579/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Allaire, Ryan H.</creatorcontrib><creatorcontrib>Cummings, Linda J.</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><title>On efficient asymptotic modelling of thin films on thermally conductive substrates</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the film's material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of-plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a set-up commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered set-up the Marangoni (thermocapillary) effect turns out to be insignificant.</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Drying</subject><subject>Evolution</subject><subject>Film thickness</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Heat conductivity</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>JFM Papers</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Liquid phases</subject><subject>Material properties</subject><subject>Metal films</subject><subject>Metals</subject><subject>Modelling</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Partial differential equations</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Temperature fields</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkF1LwzAUhoMoOKd3_oCAt7aepG2yXsrwCwYD0euQpiczo21mkgr793Zs4I1XhwPP-57DQ8gtg5wBkw9b2-ccOMtZJc_IjJWizqQoq3MyA-A8Y4zDJbmKcQvACqjljLyvB4rWOuNwSFTHfb9LPjlDe99i17lhQ72l6csN1Lquj9QP04ah1123p8YP7WiS-0EaxyamoBPGa3JhdRfx5jTn5PP56WP5mq3WL2_Lx1VmCuApKxAbYK1A3k6_aTCgZdWUCFAtoGR1JURRWG0aaRfS1A2yqrRlowsUJQomijm5O_bugv8eMSa19WMYppOKVyChXjDBJur-SJngYwxo1S64Xoe9YqAO1tRkTR2sqcnahOcnXPdNcO0G_1r_DfwC3V9vpA</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Allaire, Ryan H.</creator><creator>Cummings, Linda J.</creator><creator>Kondic, Lou</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7783-2126</orcidid><orcidid>https://orcid.org/0000-0002-9336-3593</orcidid><orcidid>https://orcid.org/0000-0001-6966-9851</orcidid></search><sort><creationdate>20210331</creationdate><title>On efficient asymptotic modelling of thin films on thermally conductive substrates</title><author>Allaire, Ryan H. ; Cummings, Linda J. ; Kondic, Lou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-3eeb01d6e2d022a0c0a75b4e0058041956633facb7f87c9be154f4ba3e64e6163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Drying</topic><topic>Evolution</topic><topic>Film thickness</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Heat conductivity</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>JFM Papers</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Liquid phases</topic><topic>Material properties</topic><topic>Metal films</topic><topic>Metals</topic><topic>Modelling</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Partial differential equations</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Temperature fields</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allaire, Ryan H.</creatorcontrib><creatorcontrib>Cummings, Linda J.</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allaire, Ryan H.</au><au>Cummings, Linda J.</au><au>Kondic, Lou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On efficient asymptotic modelling of thin films on thermally conductive substrates</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-03-31</date><risdate>2021</risdate><volume>915</volume><artnum>A133</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider a free-surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a set-up where the heat absorption depends on the local film thickness. Our focus is on modelling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the film's material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of-plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a set-up commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered set-up the Marangoni (thermocapillary) effect turns out to be insignificant.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.157</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-7783-2126</orcidid><orcidid>https://orcid.org/0000-0002-9336-3593</orcidid><orcidid>https://orcid.org/0000-0001-6966-9851</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-03, Vol.915, Article A133
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2507098161
source Cambridge University Press Journals Complete
subjects Asymptotic properties
Boundary conditions
Drying
Evolution
Film thickness
Fluid dynamics
Fluid mechanics
Free surfaces
Heat conductivity
Heat flow
Heat transfer
Heat transmission
JFM Papers
Laser beam heating
Lasers
Liquid phases
Material properties
Metal films
Metals
Modelling
Nanotechnology
Optical properties
Partial differential equations
Substrates
Temperature
Temperature dependence
Temperature distribution
Temperature effects
Temperature fields
Thermal analysis
Thermal conductivity
Thin films
Viscosity
title On efficient asymptotic modelling of thin films on thermally conductive substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20efficient%20asymptotic%20modelling%20of%20thin%20films%20on%20thermally%20conductive%20substrates&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Allaire,%20Ryan%20H.&rft.date=2021-03-31&rft.volume=915&rft.artnum=A133&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.157&rft_dat=%3Cproquest_cross%3E2507098161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507098161&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_157&rfr_iscdi=true