Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures
The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1912 |
---|---|
container_issue | 5 |
container_start_page | 1901 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 52 |
creator | Jarugula, Rajesh Channagiri, Samartha Raman, S. Ganesh Sundara Sundararajan, G. |
description | The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10
−4
to 10
−2
s
−1
. Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10
−4
s
−1
demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified. |
doi_str_mv | 10.1007/s11661-021-06200-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506941726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506941726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-AU9NPFen7W6XPRoUNUE5wL0p3VkogS62JdF_b3FNuHmYvDm8703mEXLL4Z4DVA-Rc6U4A5FHCQAGZ2TAy0IyXhdwnneoJCuVkJfkKsYNAPBaqgHp5imgX6U1eudX9B3t2ngXd5E6Tz-M7-jsyzVIn1zcY4iu8-xEYEMnyPhoHLKG4JKzdJ4Qt9SkTLQtZmeiC9xl1qRDwHhNLlqzjXjzp0OymDwvxq9sOnt5Gz9OmZW8TqywjWzBmkYqXogWIH_Ba2GlsUuzbG1ZlE1lBNqiqrlVUDUFlGVV1iNhmxbkkNz1sfvQfR4wJr3pDsHni1qUoOqCV0Jll-hdNnQxBmz1PridCd-agz72qvtede5V__aqj9Gyh2I2-xWGU_Q_1A_69Xt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506941726</pqid></control><display><type>article</type><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</creator><creatorcontrib>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</creatorcontrib><description>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10
−4
to 10
−2
s
−1
. Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10
−4
s
−1
demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06200-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation mechanisms ; Dispersion hardening steels ; Ferritic stainless steels ; Grain size ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Oxide dispersion strengthening ; Strain rate ; Structural Materials ; Surfaces and Interfaces ; Temperature ; Thin Films ; Yield strength ; Yield stress</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2021</rights><rights>The Minerals, Metals & Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</citedby><cites>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06200-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06200-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jarugula, Rajesh</creatorcontrib><creatorcontrib>Channagiri, Samartha</creatorcontrib><creatorcontrib>Raman, S. Ganesh Sundara</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10
−4
to 10
−2
s
−1
. Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10
−4
s
−1
demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation mechanisms</subject><subject>Dispersion hardening steels</subject><subject>Ferritic stainless steels</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Oxide dispersion strengthening</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFPAjEQhRujiYj-AU9NPFen7W6XPRoUNUE5wL0p3VkogS62JdF_b3FNuHmYvDm8703mEXLL4Z4DVA-Rc6U4A5FHCQAGZ2TAy0IyXhdwnneoJCuVkJfkKsYNAPBaqgHp5imgX6U1eudX9B3t2ngXd5E6Tz-M7-jsyzVIn1zcY4iu8-xEYEMnyPhoHLKG4JKzdJ4Qt9SkTLQtZmeiC9xl1qRDwHhNLlqzjXjzp0OymDwvxq9sOnt5Gz9OmZW8TqywjWzBmkYqXogWIH_Ba2GlsUuzbG1ZlE1lBNqiqrlVUDUFlGVV1iNhmxbkkNz1sfvQfR4wJr3pDsHni1qUoOqCV0Jll-hdNnQxBmz1PridCd-agz72qvtede5V__aqj9Gyh2I2-xWGU_Q_1A_69Xt0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jarugula, Rajesh</creator><creator>Channagiri, Samartha</creator><creator>Raman, S. Ganesh Sundara</creator><creator>Sundararajan, G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210501</creationdate><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><author>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation mechanisms</topic><topic>Dispersion hardening steels</topic><topic>Ferritic stainless steels</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Oxide dispersion strengthening</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarugula, Rajesh</creatorcontrib><creatorcontrib>Channagiri, Samartha</creatorcontrib><creatorcontrib>Raman, S. Ganesh Sundara</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarugula, Rajesh</au><au>Channagiri, Samartha</au><au>Raman, S. Ganesh Sundara</au><au>Sundararajan, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>52</volume><issue>5</issue><spage>1901</spage><epage>1912</epage><pages>1901-1912</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10
−4
to 10
−2
s
−1
. Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10
−4
s
−1
demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06200-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2506941726 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Deformation mechanisms Dispersion hardening steels Ferritic stainless steels Grain size Materials Science Metallic Materials Nanotechnology Original Research Article Oxide dispersion strengthening Strain rate Structural Materials Surfaces and Interfaces Temperature Thin Films Yield strength Yield stress |
title | Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20Mechanisms%20in%20Nano%20Oxide%20Dispersion-Strengthened%20Fe-18Cr%20Ferritic%20Steel%20at%20Different%20Temperatures&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Jarugula,%20Rajesh&rft.date=2021-05-01&rft.volume=52&rft.issue=5&rft.spage=1901&rft.epage=1912&rft.pages=1901-1912&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06200-0&rft_dat=%3Cproquest_cross%3E2506941726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506941726&rft_id=info:pmid/&rfr_iscdi=true |