Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures

The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912
Hauptverfasser: Jarugula, Rajesh, Channagiri, Samartha, Raman, S. Ganesh Sundara, Sundararajan, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1912
container_issue 5
container_start_page 1901
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 52
creator Jarugula, Rajesh
Channagiri, Samartha
Raman, S. Ganesh Sundara
Sundararajan, G.
description The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10 −4 s −1 demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.
doi_str_mv 10.1007/s11661-021-06200-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506941726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506941726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</originalsourceid><addsrcrecordid>eNp9kEFPAjEQhRujiYj-AU9NPFen7W6XPRoUNUE5wL0p3VkogS62JdF_b3FNuHmYvDm8703mEXLL4Z4DVA-Rc6U4A5FHCQAGZ2TAy0IyXhdwnneoJCuVkJfkKsYNAPBaqgHp5imgX6U1eudX9B3t2ngXd5E6Tz-M7-jsyzVIn1zcY4iu8-xEYEMnyPhoHLKG4JKzdJ4Qt9SkTLQtZmeiC9xl1qRDwHhNLlqzjXjzp0OymDwvxq9sOnt5Gz9OmZW8TqywjWzBmkYqXogWIH_Ba2GlsUuzbG1ZlE1lBNqiqrlVUDUFlGVV1iNhmxbkkNz1sfvQfR4wJr3pDsHni1qUoOqCV0Jll-hdNnQxBmz1PridCd-agz72qvtede5V__aqj9Gyh2I2-xWGU_Q_1A_69Xt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506941726</pqid></control><display><type>article</type><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</creator><creatorcontrib>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</creatorcontrib><description>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10 −4 s −1 demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06200-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation mechanisms ; Dispersion hardening steels ; Ferritic stainless steels ; Grain size ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Oxide dispersion strengthening ; Strain rate ; Structural Materials ; Surfaces and Interfaces ; Temperature ; Thin Films ; Yield strength ; Yield stress</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</citedby><cites>FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06200-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06200-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jarugula, Rajesh</creatorcontrib><creatorcontrib>Channagiri, Samartha</creatorcontrib><creatorcontrib>Raman, S. Ganesh Sundara</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10 −4 s −1 demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation mechanisms</subject><subject>Dispersion hardening steels</subject><subject>Ferritic stainless steels</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Oxide dispersion strengthening</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFPAjEQhRujiYj-AU9NPFen7W6XPRoUNUE5wL0p3VkogS62JdF_b3FNuHmYvDm8703mEXLL4Z4DVA-Rc6U4A5FHCQAGZ2TAy0IyXhdwnneoJCuVkJfkKsYNAPBaqgHp5imgX6U1eudX9B3t2ngXd5E6Tz-M7-jsyzVIn1zcY4iu8-xEYEMnyPhoHLKG4JKzdJ4Qt9SkTLQtZmeiC9xl1qRDwHhNLlqzjXjzp0OymDwvxq9sOnt5Gz9OmZW8TqywjWzBmkYqXogWIH_Ba2GlsUuzbG1ZlE1lBNqiqrlVUDUFlGVV1iNhmxbkkNz1sfvQfR4wJr3pDsHni1qUoOqCV0Jll-hdNnQxBmz1PridCd-agz72qvtede5V__aqj9Gyh2I2-xWGU_Q_1A_69Xt0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jarugula, Rajesh</creator><creator>Channagiri, Samartha</creator><creator>Raman, S. Ganesh Sundara</creator><creator>Sundararajan, G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210501</creationdate><title>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</title><author>Jarugula, Rajesh ; Channagiri, Samartha ; Raman, S. Ganesh Sundara ; Sundararajan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4cd3f0cad36142f00940192c3acbabfc545d7a2ec4791c607d405575982cdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation mechanisms</topic><topic>Dispersion hardening steels</topic><topic>Ferritic stainless steels</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Oxide dispersion strengthening</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarugula, Rajesh</creatorcontrib><creatorcontrib>Channagiri, Samartha</creatorcontrib><creatorcontrib>Raman, S. Ganesh Sundara</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarugula, Rajesh</au><au>Channagiri, Samartha</au><au>Raman, S. Ganesh Sundara</au><au>Sundararajan, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>52</volume><issue>5</issue><spage>1901</spage><epage>1912</epage><pages>1901-1912</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The objective of the present work is to evaluate isothermal uniaxial compressive deformation behavior of nano oxide dispersion-strengthened (n-ODS)-18Cr ferritic steel over a range of temperatures RT—1173 K and range of strain rates 10 −4 to 10 −2 s −1 . Irrespective of temperature, the influence of the strain rate on the yield strength is insignificant up to 673 K. It is found that the plot of variation of yield strength as a function of temperature exhibits three regimes, which indicates that different deformation mechanisms are governing the yield strength of n-ODS-18Cr steel. Transmission electron microscopic analysis of a sample deformed at the highest temperature of 1173 K and the lowest strain rate of 10 −4 s −1 demonstrates no significant change in the grain size and nanoprecipitate size. Also, it confirms the interaction between dislocations and nanoprecipitates. Different deformation mechanisms governing the yield strength of n-ODS-18Cr steel are identified in all three regimes and their contributions are quantified.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06200-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-05, Vol.52 (5), p.1901-1912
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2506941726
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Deformation mechanisms
Dispersion hardening steels
Ferritic stainless steels
Grain size
Materials Science
Metallic Materials
Nanotechnology
Original Research Article
Oxide dispersion strengthening
Strain rate
Structural Materials
Surfaces and Interfaces
Temperature
Thin Films
Yield strength
Yield stress
title Strengthening Mechanisms in Nano Oxide Dispersion-Strengthened Fe-18Cr Ferritic Steel at Different Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20Mechanisms%20in%20Nano%20Oxide%20Dispersion-Strengthened%20Fe-18Cr%20Ferritic%20Steel%20at%20Different%20Temperatures&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Jarugula,%20Rajesh&rft.date=2021-05-01&rft.volume=52&rft.issue=5&rft.spage=1901&rft.epage=1912&rft.pages=1901-1912&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06200-0&rft_dat=%3Cproquest_cross%3E2506941726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506941726&rft_id=info:pmid/&rfr_iscdi=true