Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate

Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-03, Vol.910 (1), p.51
Hauptverfasser: Komaki, Ayano, Nakatani, Riouhei, Yoshida, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 51
container_title The Astrophysical journal
container_volume 910
creator Komaki, Ayano
Nakatani, Riouhei
Yoshida, Naoki
description Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of M * = 0.5–7.0 M ⊙ . We derive disk mass-loss rate M ̇ , which has strong stellar dependence as M ̇ ≈ 7.30 × 10 − 9 ( M * / M ⊙ ) 2 M ⊙ yr − 1 . The absolute value of M ̇ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.
doi_str_mv 10.3847/1538-4357/abe2af
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2506764863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506764863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWr17XPBq7G42m4c3qY8KFUur4C1Ms7M0Nc3G3W2h_96kET15Guab78F8hFxydiPSKBlxKdIgEjIZwRJD0Edk8AsdkwFjLApikXyckjPn1t0aZtmA7OagSvClqelkr6xR-xo2ZeHootxsq8PBUaPpzBpvmgpq9GD39L50n-6WLjxWFVj6As7Re2ywVlgX2An8Cg8sOlu1StxBY2yfMweP5-REQ-Xw4mcOyfvjw9t4Ekxfn57Hd9OgiHjsA5QyLpREyPgSpSiYlJgqGTKtlmkLCK1BcsgkAw4pT1IeJToTTLEkhLDgYkiuet_Gmq8tOp-vzdbWbWQeShYncZTGomWxnlVY45xFnTe23LR_5pzlXbt5V2XeVZn37baS615SmubP81_6Nyuhfis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506764863</pqid></control><display><type>article</type><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><source>IOP Publishing Free Content</source><creator>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</creator><creatorcontrib>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</creatorcontrib><description>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of M * = 0.5–7.0 M ⊙ . We derive disk mass-loss rate M ̇ , which has strong stellar dependence as M ̇ ≈ 7.30 × 10 − 9 ( M * / M ⊙ ) 2 M ⊙ yr − 1 . The absolute value of M ̇ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abe2af</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Computational fluid dynamics ; Dependence ; Dispersal ; Fluid flow ; Fluid mechanics ; Hydrodynamical simulations ; Hydrodynamics ; Interstellar medium ; Massive stars ; Planet formation ; Polynomials ; Protoplanetary disks ; Star formation ; Stellar mass ; Ultraviolet radiation</subject><ispartof>The Astrophysical journal, 2021-03, Vol.910 (1), p.51</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</citedby><cites>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</cites><orcidid>0000-0001-7925-238X ; 0000-0002-9995-5223 ; 0000-0002-1803-0203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abe2af/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abe2af$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Komaki, Ayano</creatorcontrib><creatorcontrib>Nakatani, Riouhei</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of M * = 0.5–7.0 M ⊙ . We derive disk mass-loss rate M ̇ , which has strong stellar dependence as M ̇ ≈ 7.30 × 10 − 9 ( M * / M ⊙ ) 2 M ⊙ yr − 1 . The absolute value of M ̇ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</description><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Dependence</subject><subject>Dispersal</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamical simulations</subject><subject>Hydrodynamics</subject><subject>Interstellar medium</subject><subject>Massive stars</subject><subject>Planet formation</subject><subject>Polynomials</subject><subject>Protoplanetary disks</subject><subject>Star formation</subject><subject>Stellar mass</subject><subject>Ultraviolet radiation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWr17XPBq7G42m4c3qY8KFUur4C1Ms7M0Nc3G3W2h_96kET15Guab78F8hFxydiPSKBlxKdIgEjIZwRJD0Edk8AsdkwFjLApikXyckjPn1t0aZtmA7OagSvClqelkr6xR-xo2ZeHootxsq8PBUaPpzBpvmgpq9GD39L50n-6WLjxWFVj6As7Re2ywVlgX2An8Cg8sOlu1StxBY2yfMweP5-REQ-Xw4mcOyfvjw9t4Ekxfn57Hd9OgiHjsA5QyLpREyPgSpSiYlJgqGTKtlmkLCK1BcsgkAw4pT1IeJToTTLEkhLDgYkiuet_Gmq8tOp-vzdbWbWQeShYncZTGomWxnlVY45xFnTe23LR_5pzlXbt5V2XeVZn37baS615SmubP81_6Nyuhfis</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Komaki, Ayano</creator><creator>Nakatani, Riouhei</creator><creator>Yoshida, Naoki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7925-238X</orcidid><orcidid>https://orcid.org/0000-0002-9995-5223</orcidid><orcidid>https://orcid.org/0000-0002-1803-0203</orcidid></search><sort><creationdate>20210301</creationdate><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><author>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Dependence</topic><topic>Dispersal</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamical simulations</topic><topic>Hydrodynamics</topic><topic>Interstellar medium</topic><topic>Massive stars</topic><topic>Planet formation</topic><topic>Polynomials</topic><topic>Protoplanetary disks</topic><topic>Star formation</topic><topic>Stellar mass</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komaki, Ayano</creatorcontrib><creatorcontrib>Nakatani, Riouhei</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komaki, Ayano</au><au>Nakatani, Riouhei</au><au>Yoshida, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>910</volume><issue>1</issue><spage>51</spage><pages>51-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of M * = 0.5–7.0 M ⊙ . We derive disk mass-loss rate M ̇ , which has strong stellar dependence as M ̇ ≈ 7.30 × 10 − 9 ( M * / M ⊙ ) 2 M ⊙ yr − 1 . The absolute value of M ̇ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abe2af</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7925-238X</orcidid><orcidid>https://orcid.org/0000-0002-9995-5223</orcidid><orcidid>https://orcid.org/0000-0002-1803-0203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-03, Vol.910 (1), p.51
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2506764863
source IOP Publishing Free Content
subjects Astrophysics
Computational fluid dynamics
Dependence
Dispersal
Fluid flow
Fluid mechanics
Hydrodynamical simulations
Hydrodynamics
Interstellar medium
Massive stars
Planet formation
Polynomials
Protoplanetary disks
Star formation
Stellar mass
Ultraviolet radiation
title Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Hydrodynamics%20Simulations%20of%20Protoplanetary%20Disks:%20Stellar%20Mass%20Dependence%20of%20the%20Disk%20Photoevaporation%20Rate&rft.jtitle=The%20Astrophysical%20journal&rft.au=Komaki,%20Ayano&rft.date=2021-03-01&rft.volume=910&rft.issue=1&rft.spage=51&rft.pages=51-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abe2af&rft_dat=%3Cproquest_O3W%3E2506764863%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506764863&rft_id=info:pmid/&rfr_iscdi=true