Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate
Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-03, Vol.910 (1), p.51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | The Astrophysical journal |
container_volume | 910 |
creator | Komaki, Ayano Nakatani, Riouhei Yoshida, Naoki |
description | Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of
M
*
= 0.5–7.0
M
⊙
. We derive disk mass-loss rate
M
̇
, which has strong stellar dependence as
M
̇
≈
7.30
×
10
−
9
(
M
*
/
M
⊙
)
2
M
⊙
yr
−
1
. The absolute value of
M
̇
scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime. |
doi_str_mv | 10.3847/1538-4357/abe2af |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2506764863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506764863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWr17XPBq7G42m4c3qY8KFUur4C1Ms7M0Nc3G3W2h_96kET15Guab78F8hFxydiPSKBlxKdIgEjIZwRJD0Edk8AsdkwFjLApikXyckjPn1t0aZtmA7OagSvClqelkr6xR-xo2ZeHootxsq8PBUaPpzBpvmgpq9GD39L50n-6WLjxWFVj6As7Re2ywVlgX2An8Cg8sOlu1StxBY2yfMweP5-REQ-Xw4mcOyfvjw9t4Ekxfn57Hd9OgiHjsA5QyLpREyPgSpSiYlJgqGTKtlmkLCK1BcsgkAw4pT1IeJToTTLEkhLDgYkiuet_Gmq8tOp-vzdbWbWQeShYncZTGomWxnlVY45xFnTe23LR_5pzlXbt5V2XeVZn37baS615SmubP81_6Nyuhfis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506764863</pqid></control><display><type>article</type><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><source>IOP Publishing Free Content</source><creator>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</creator><creatorcontrib>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</creatorcontrib><description>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of
M
*
= 0.5–7.0
M
⊙
. We derive disk mass-loss rate
M
̇
, which has strong stellar dependence as
M
̇
≈
7.30
×
10
−
9
(
M
*
/
M
⊙
)
2
M
⊙
yr
−
1
. The absolute value of
M
̇
scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abe2af</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Computational fluid dynamics ; Dependence ; Dispersal ; Fluid flow ; Fluid mechanics ; Hydrodynamical simulations ; Hydrodynamics ; Interstellar medium ; Massive stars ; Planet formation ; Polynomials ; Protoplanetary disks ; Star formation ; Stellar mass ; Ultraviolet radiation</subject><ispartof>The Astrophysical journal, 2021-03, Vol.910 (1), p.51</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</citedby><cites>FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</cites><orcidid>0000-0001-7925-238X ; 0000-0002-9995-5223 ; 0000-0002-1803-0203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abe2af/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abe2af$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Komaki, Ayano</creatorcontrib><creatorcontrib>Nakatani, Riouhei</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of
M
*
= 0.5–7.0
M
⊙
. We derive disk mass-loss rate
M
̇
, which has strong stellar dependence as
M
̇
≈
7.30
×
10
−
9
(
M
*
/
M
⊙
)
2
M
⊙
yr
−
1
. The absolute value of
M
̇
scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</description><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Dependence</subject><subject>Dispersal</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamical simulations</subject><subject>Hydrodynamics</subject><subject>Interstellar medium</subject><subject>Massive stars</subject><subject>Planet formation</subject><subject>Polynomials</subject><subject>Protoplanetary disks</subject><subject>Star formation</subject><subject>Stellar mass</subject><subject>Ultraviolet radiation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWr17XPBq7G42m4c3qY8KFUur4C1Ms7M0Nc3G3W2h_96kET15Guab78F8hFxydiPSKBlxKdIgEjIZwRJD0Edk8AsdkwFjLApikXyckjPn1t0aZtmA7OagSvClqelkr6xR-xo2ZeHootxsq8PBUaPpzBpvmgpq9GD39L50n-6WLjxWFVj6As7Re2ywVlgX2An8Cg8sOlu1StxBY2yfMweP5-REQ-Xw4mcOyfvjw9t4Ekxfn57Hd9OgiHjsA5QyLpREyPgSpSiYlJgqGTKtlmkLCK1BcsgkAw4pT1IeJToTTLEkhLDgYkiuet_Gmq8tOp-vzdbWbWQeShYncZTGomWxnlVY45xFnTe23LR_5pzlXbt5V2XeVZn37baS615SmubP81_6Nyuhfis</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Komaki, Ayano</creator><creator>Nakatani, Riouhei</creator><creator>Yoshida, Naoki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7925-238X</orcidid><orcidid>https://orcid.org/0000-0002-9995-5223</orcidid><orcidid>https://orcid.org/0000-0002-1803-0203</orcidid></search><sort><creationdate>20210301</creationdate><title>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</title><author>Komaki, Ayano ; Nakatani, Riouhei ; Yoshida, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e556cd5ea91be53c055e8d520fdb8e533ffa51a950a1a8178147f930d072a2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Dependence</topic><topic>Dispersal</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamical simulations</topic><topic>Hydrodynamics</topic><topic>Interstellar medium</topic><topic>Massive stars</topic><topic>Planet formation</topic><topic>Polynomials</topic><topic>Protoplanetary disks</topic><topic>Star formation</topic><topic>Stellar mass</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komaki, Ayano</creatorcontrib><creatorcontrib>Nakatani, Riouhei</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komaki, Ayano</au><au>Nakatani, Riouhei</au><au>Yoshida, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>910</volume><issue>1</issue><spage>51</spage><pages>51-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Recent multiwavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultraviolet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of
M
*
= 0.5–7.0
M
⊙
. We derive disk mass-loss rate
M
̇
, which has strong stellar dependence as
M
̇
≈
7.30
×
10
−
9
(
M
*
/
M
⊙
)
2
M
⊙
yr
−
1
. The absolute value of
M
̇
scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semianalytic model that well reproduces the derived mass-loss rates. The estimated inner-disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner-disk lifetime.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abe2af</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7925-238X</orcidid><orcidid>https://orcid.org/0000-0002-9995-5223</orcidid><orcidid>https://orcid.org/0000-0002-1803-0203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-03, Vol.910 (1), p.51 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2506764863 |
source | IOP Publishing Free Content |
subjects | Astrophysics Computational fluid dynamics Dependence Dispersal Fluid flow Fluid mechanics Hydrodynamical simulations Hydrodynamics Interstellar medium Massive stars Planet formation Polynomials Protoplanetary disks Star formation Stellar mass Ultraviolet radiation |
title | Radiation Hydrodynamics Simulations of Protoplanetary Disks: Stellar Mass Dependence of the Disk Photoevaporation Rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Hydrodynamics%20Simulations%20of%20Protoplanetary%20Disks:%20Stellar%20Mass%20Dependence%20of%20the%20Disk%20Photoevaporation%20Rate&rft.jtitle=The%20Astrophysical%20journal&rft.au=Komaki,%20Ayano&rft.date=2021-03-01&rft.volume=910&rft.issue=1&rft.spage=51&rft.pages=51-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abe2af&rft_dat=%3Cproquest_O3W%3E2506764863%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506764863&rft_id=info:pmid/&rfr_iscdi=true |