Ground state charge density prediction in C-BN nanoflakes using rotation equivariant feature-free artificial neural networks
Ab initio methods have been the workhorse for the computational investigation of new materials during the past few decades. In spite of the improvements regarding the efficiency and scalability achieved by various implementations, the self-consistent solution of the Konhn-Sham equations remains chal...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-04, Vol.174, p.276-283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!