A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance
Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with exc...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-04, Vol.174, p.662-672 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 672 |
---|---|
container_issue | |
container_start_page | 662 |
container_title | Carbon (New York) |
container_volume | 174 |
creator | Yan, Xu Huang, Xiaoxiao Chen, Yanting Liu, Yuhao Xia, Long Zhang, Tao Lin, Haiyan Jia, Dechang Zhong, Bo Wen, Guangwu Zhou, Yu |
description | Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications.
[Display omitted]
•A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34 mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption. |
doi_str_mv | 10.1016/j.carbon.2020.11.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506754011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311234</els_id><sourcerecordid>2506754011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8tyZN2rQXYVn8ggUveg5p-rKb0m1qklX335ulnr28xxtm5jGD0C0lOSW0uu9zrXzrxrwgRYJoTjg_QwtaC5axuqHnaEEIqbOqKNglugqhTyevKV-gboXjDpyHaLUacIheRdgesTN4OnjAszHeJ9RbNQRsnMeD3e7iN5wmVmOH4UfDMMCYrjY4P0WbJBP4xN2rUcM1ujBJCzd_e4k-nh7f1y_Z5u35db3aZJoxHrMCuGhaooRRipIWDFMlAd4VDBQvdaMaLUowXHV1VQpg3LRdKRJf8I4ZytgS3c2-k3efBwhR9u7gx_RSFiWpRMkJpYnFZ5b2LgQPRk7e7pU_SkrkqU_Zyzm2PPUpKZWpzyR7mGWQEnxZ8DJoCyldZz3oKDtn_zf4BdwWgnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506754011</pqid></control><display><type>article</type><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</creator><creatorcontrib>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</creatorcontrib><description>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications.
[Display omitted]
•A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34 mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.11.044</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorption spectra ; Carbon ; Carbon materials ; Conductivity ; Design of experiments ; Design optimization ; Electromagnetic radiation ; Electromagnetic wave absorption ; Electromagnetics ; Heat conductivity ; Impedance matching ; Melamine ; Nanotubes ; Relaxation intensity ; Ultralight ; Wave attenuation</subject><ispartof>Carbon (New York), 2021-04, Vol.174, p.662-672</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</citedby><cites>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.11.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Chen, Yanting</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Xia, Long</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Jia, Dechang</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><title>Carbon (New York)</title><description>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications.
[Display omitted]
•A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34 mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Carbon materials</subject><subject>Conductivity</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic wave absorption</subject><subject>Electromagnetics</subject><subject>Heat conductivity</subject><subject>Impedance matching</subject><subject>Melamine</subject><subject>Nanotubes</subject><subject>Relaxation intensity</subject><subject>Ultralight</subject><subject>Wave attenuation</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8tyZN2rQXYVn8ggUveg5p-rKb0m1qklX335ulnr28xxtm5jGD0C0lOSW0uu9zrXzrxrwgRYJoTjg_QwtaC5axuqHnaEEIqbOqKNglugqhTyevKV-gboXjDpyHaLUacIheRdgesTN4OnjAszHeJ9RbNQRsnMeD3e7iN5wmVmOH4UfDMMCYrjY4P0WbJBP4xN2rUcM1ujBJCzd_e4k-nh7f1y_Z5u35db3aZJoxHrMCuGhaooRRipIWDFMlAd4VDBQvdaMaLUowXHV1VQpg3LRdKRJf8I4ZytgS3c2-k3efBwhR9u7gx_RSFiWpRMkJpYnFZ5b2LgQPRk7e7pU_SkrkqU_Zyzm2PPUpKZWpzyR7mGWQEnxZ8DJoCyldZz3oKDtn_zf4BdwWgnk</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Yan, Xu</creator><creator>Huang, Xiaoxiao</creator><creator>Chen, Yanting</creator><creator>Liu, Yuhao</creator><creator>Xia, Long</creator><creator>Zhang, Tao</creator><creator>Lin, Haiyan</creator><creator>Jia, Dechang</creator><creator>Zhong, Bo</creator><creator>Wen, Guangwu</creator><creator>Zhou, Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210415</creationdate><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><author>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Carbon materials</topic><topic>Conductivity</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic wave absorption</topic><topic>Electromagnetics</topic><topic>Heat conductivity</topic><topic>Impedance matching</topic><topic>Melamine</topic><topic>Nanotubes</topic><topic>Relaxation intensity</topic><topic>Ultralight</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Chen, Yanting</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Xia, Long</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Jia, Dechang</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xu</au><au>Huang, Xiaoxiao</au><au>Chen, Yanting</au><au>Liu, Yuhao</au><au>Xia, Long</au><au>Zhang, Tao</au><au>Lin, Haiyan</au><au>Jia, Dechang</au><au>Zhong, Bo</au><au>Wen, Guangwu</au><au>Zhou, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</atitle><jtitle>Carbon (New York)</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>174</volume><spage>662</spage><epage>672</epage><pages>662-672</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications.
[Display omitted]
•A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34 mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.11.044</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-04, Vol.174, p.662-672 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2506754011 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption spectra Carbon Carbon materials Conductivity Design of experiments Design optimization Electromagnetic radiation Electromagnetic wave absorption Electromagnetics Heat conductivity Impedance matching Melamine Nanotubes Relaxation intensity Ultralight Wave attenuation |
title | A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20strategy%20of%20pure%20carbon%20materials%20for%20lightweight%20and%20excellent%20absorption%20performance&rft.jtitle=Carbon%20(New%20York)&rft.au=Yan,%20Xu&rft.date=2021-04-15&rft.volume=174&rft.spage=662&rft.epage=672&rft.pages=662-672&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.11.044&rft_dat=%3Cproquest_cross%3E2506754011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506754011&rft_id=info:pmid/&rft_els_id=S0008622320311234&rfr_iscdi=true |