A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance

Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-04, Vol.174, p.662-672
Hauptverfasser: Yan, Xu, Huang, Xiaoxiao, Chen, Yanting, Liu, Yuhao, Xia, Long, Zhang, Tao, Lin, Haiyan, Jia, Dechang, Zhong, Bo, Wen, Guangwu, Zhou, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue
container_start_page 662
container_title Carbon (New York)
container_volume 174
creator Yan, Xu
Huang, Xiaoxiao
Chen, Yanting
Liu, Yuhao
Xia, Long
Zhang, Tao
Lin, Haiyan
Jia, Dechang
Zhong, Bo
Wen, Guangwu
Zhou, Yu
description Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications. [Display omitted] •A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34  mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.
doi_str_mv 10.1016/j.carbon.2020.11.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506754011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311234</els_id><sourcerecordid>2506754011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8tyZN2rQXYVn8ggUveg5p-rKb0m1qklX335ulnr28xxtm5jGD0C0lOSW0uu9zrXzrxrwgRYJoTjg_QwtaC5axuqHnaEEIqbOqKNglugqhTyevKV-gboXjDpyHaLUacIheRdgesTN4OnjAszHeJ9RbNQRsnMeD3e7iN5wmVmOH4UfDMMCYrjY4P0WbJBP4xN2rUcM1ujBJCzd_e4k-nh7f1y_Z5u35db3aZJoxHrMCuGhaooRRipIWDFMlAd4VDBQvdaMaLUowXHV1VQpg3LRdKRJf8I4ZytgS3c2-k3efBwhR9u7gx_RSFiWpRMkJpYnFZ5b2LgQPRk7e7pU_SkrkqU_Zyzm2PPUpKZWpzyR7mGWQEnxZ8DJoCyldZz3oKDtn_zf4BdwWgnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506754011</pqid></control><display><type>article</type><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</creator><creatorcontrib>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</creatorcontrib><description>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications. [Display omitted] •A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34  mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.11.044</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorption spectra ; Carbon ; Carbon materials ; Conductivity ; Design of experiments ; Design optimization ; Electromagnetic radiation ; Electromagnetic wave absorption ; Electromagnetics ; Heat conductivity ; Impedance matching ; Melamine ; Nanotubes ; Relaxation intensity ; Ultralight ; Wave attenuation</subject><ispartof>Carbon (New York), 2021-04, Vol.174, p.662-672</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</citedby><cites>FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.11.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Chen, Yanting</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Xia, Long</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Jia, Dechang</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><title>Carbon (New York)</title><description>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications. [Display omitted] •A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34  mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Carbon materials</subject><subject>Conductivity</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic wave absorption</subject><subject>Electromagnetics</subject><subject>Heat conductivity</subject><subject>Impedance matching</subject><subject>Melamine</subject><subject>Nanotubes</subject><subject>Relaxation intensity</subject><subject>Ultralight</subject><subject>Wave attenuation</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8tyZN2rQXYVn8ggUveg5p-rKb0m1qklX335ulnr28xxtm5jGD0C0lOSW0uu9zrXzrxrwgRYJoTjg_QwtaC5axuqHnaEEIqbOqKNglugqhTyevKV-gboXjDpyHaLUacIheRdgesTN4OnjAszHeJ9RbNQRsnMeD3e7iN5wmVmOH4UfDMMCYrjY4P0WbJBP4xN2rUcM1ujBJCzd_e4k-nh7f1y_Z5u35db3aZJoxHrMCuGhaooRRipIWDFMlAd4VDBQvdaMaLUowXHV1VQpg3LRdKRJf8I4ZytgS3c2-k3efBwhR9u7gx_RSFiWpRMkJpYnFZ5b2LgQPRk7e7pU_SkrkqU_Zyzm2PPUpKZWpzyR7mGWQEnxZ8DJoCyldZz3oKDtn_zf4BdwWgnk</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Yan, Xu</creator><creator>Huang, Xiaoxiao</creator><creator>Chen, Yanting</creator><creator>Liu, Yuhao</creator><creator>Xia, Long</creator><creator>Zhang, Tao</creator><creator>Lin, Haiyan</creator><creator>Jia, Dechang</creator><creator>Zhong, Bo</creator><creator>Wen, Guangwu</creator><creator>Zhou, Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210415</creationdate><title>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</title><author>Yan, Xu ; Huang, Xiaoxiao ; Chen, Yanting ; Liu, Yuhao ; Xia, Long ; Zhang, Tao ; Lin, Haiyan ; Jia, Dechang ; Zhong, Bo ; Wen, Guangwu ; Zhou, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2e479b0a7faa10bef3a50e4d23ea45c9a9c75ef4ad8657e34fbd570a774d3f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Carbon materials</topic><topic>Conductivity</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic wave absorption</topic><topic>Electromagnetics</topic><topic>Heat conductivity</topic><topic>Impedance matching</topic><topic>Melamine</topic><topic>Nanotubes</topic><topic>Relaxation intensity</topic><topic>Ultralight</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Chen, Yanting</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Xia, Long</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Jia, Dechang</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Wen, Guangwu</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xu</au><au>Huang, Xiaoxiao</au><au>Chen, Yanting</au><au>Liu, Yuhao</au><au>Xia, Long</au><au>Zhang, Tao</au><au>Lin, Haiyan</au><au>Jia, Dechang</au><au>Zhong, Bo</au><au>Wen, Guangwu</au><au>Zhou, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance</atitle><jtitle>Carbon (New York)</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>174</volume><spage>662</spage><epage>672</epage><pages>662-672</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Developing the pure carbon materials with ultra-light and excellent electromagnetic wave absorption (EWA) performance that aims to solve signal interference or electromagnetic pollution is highly desirable. However, there still remains a huge challenge that whether the pure carbon materials with excellent conductivity can be used as EWA alone and how the performance can be optimized. Keeping the high conductivity and adjusting the relaxation intensity (Δε) at the same time are theoretically found to be the effective way to improve the attenuation of electromagnetic wave and obtain better impedance matching. Herein, the key relationship between Δε and EWA property is proved by theoretical calculation. As the experimental design, the pure carbon absorber, CMF (carbonized melamine foam, the density of 4.34 mg cm−3), which holds highly conductivity and appropriate Δε, exhibits a strong absorption (−57.3 dB) and a wide effective absorption band of 8.32 GHz. It is verified when carbon material possesses excellent conductivity, it is easy to steer the optimized design of Δε toward improving the impedance matching. Meanwhile, the strategy developed here paves a new way for the design of high conductivity and ultralight EWA materials for the practical applications. [Display omitted] •A basis theoretical strategy of carbon absorber has been fully developed.•The theoretical strategy contain key factors: relaxation intensity and conductivity.•Theoretical study, experiments and simulation were explored for high performance.•When relaxation intensity is optimized to 5, broadband and ultralight are achieved.•Absorber (4.34  mg cm−3) exhibits the strong (−57.3 dB) and wide (8.32 GHz) absorption.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.11.044</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-04, Vol.174, p.662-672
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2506754011
source Elsevier ScienceDirect Journals
subjects Absorption spectra
Carbon
Carbon materials
Conductivity
Design of experiments
Design optimization
Electromagnetic radiation
Electromagnetic wave absorption
Electromagnetics
Heat conductivity
Impedance matching
Melamine
Nanotubes
Relaxation intensity
Ultralight
Wave attenuation
title A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20strategy%20of%20pure%20carbon%20materials%20for%20lightweight%20and%20excellent%20absorption%20performance&rft.jtitle=Carbon%20(New%20York)&rft.au=Yan,%20Xu&rft.date=2021-04-15&rft.volume=174&rft.spage=662&rft.epage=672&rft.pages=662-672&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.11.044&rft_dat=%3Cproquest_cross%3E2506754011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506754011&rft_id=info:pmid/&rft_els_id=S0008622320311234&rfr_iscdi=true