Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer

Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2021-03, Vol.23 (6), p.2525-253
Hauptverfasser: Zhang, Ruya, Jiang, Shuaihu, Rao, Yuan, Chen, Shan, Yue, Qin, Kang, Yijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 6
container_start_page 2525
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 23
creator Zhang, Ruya
Jiang, Shuaihu
Rao, Yuan
Chen, Shan
Yue, Qin
Kang, Yijin
description Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a value-added anodic reaction has received tremendous attention. Herein, we employ an in situ electrochemical anion-oxidation strategy to synthesize cobalt oxyhydroxide (CoOOH) nanosheets from cobalt carbonate hydroxide nanoarrays. With the use of CoOOH nanosheets as the anodic electrocatalyst in a hybrid water electrolyzer with 5-hydroxymethylfurfural, a high value product of 2,5-furandicarboxylic acid can be produced on the anode with ∼100% conversion, ∼100% selectivity and ∼100% Faraday efficiency at an operating voltage as low as 1.423 V. CoOOH nanosheets synthesized by an in situ electrochemical anion-oxidation strategy were used as anodic catalysts in a hybrid water electrolyzer.
doi_str_mv 10.1039/d0gc04157b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506646358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506646358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-331e5fce2f64ac5c96e64df3966b30167548c2e2a6f2afba300a4fab803650c03</originalsourceid><addsrcrecordid>eNqNkTFPwzAQhSMEEqWwsCNZYgMFznHsJiOE0iJV6lLmyHHOravULnaqqvx6AkFlZbo3fO-d7l0UXVN4oMDyxxqWClLKR9VJNKCpYHGejOD0qEVyHl2EsAagdCTSQbQYN6ha79QKN0bJhlTGbWQIZLddelkbuyTOksLN51NipXVhhdgGYiyRZHWovKnJXrboCfY5zeET_WV0pmUT8Op3DqP31_GimMaz-eSteJrFitGsjRmjyLXCRItUKq5ygSKtNcuFqBhQMeJpphJMpNCJ1JVkADLVssqACQ4K2DC67XO33n3sMLTl2u287VaWCQchupt51lF3PaW8C8GjLrfebKQ_lBTK79bKF5gUP609d3DWw3usnA7KoFV4NACAYCnnOe9UwgrTytY4W7idbTvr_f-tHX3T0z6oI_T3PvYFIleKCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506646358</pqid></control><display><type>article</type><title>Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer</title><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ruya ; Jiang, Shuaihu ; Rao, Yuan ; Chen, Shan ; Yue, Qin ; Kang, Yijin</creator><creatorcontrib>Zhang, Ruya ; Jiang, Shuaihu ; Rao, Yuan ; Chen, Shan ; Yue, Qin ; Kang, Yijin</creatorcontrib><description>Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a value-added anodic reaction has received tremendous attention. Herein, we employ an in situ electrochemical anion-oxidation strategy to synthesize cobalt oxyhydroxide (CoOOH) nanosheets from cobalt carbonate hydroxide nanoarrays. With the use of CoOOH nanosheets as the anodic electrocatalyst in a hybrid water electrolyzer with 5-hydroxymethylfurfural, a high value product of 2,5-furandicarboxylic acid can be produced on the anode with ∼100% conversion, ∼100% selectivity and ∼100% Faraday efficiency at an operating voltage as low as 1.423 V. CoOOH nanosheets synthesized by an in situ electrochemical anion-oxidation strategy were used as anodic catalysts in a hybrid water electrolyzer.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc04157b</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemical evolution ; Chemistry ; Chemistry, Multidisciplinary ; Cobalt ; Cobalt oxyhydroxide ; Decoupling ; Electrocatalysts ; Electrochemistry ; Evolution ; Green &amp; Sustainable Science &amp; Technology ; Green chemistry ; Green hydrogen ; Hydrogen evolution ; Hydrogen production ; Hydroxymethylfurfural ; Nanosheets ; Oxidation ; Oxygen ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Selectivity ; Water splitting</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2021-03, Vol.23 (6), p.2525-253</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000634559500023</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c318t-331e5fce2f64ac5c96e64df3966b30167548c2e2a6f2afba300a4fab803650c03</citedby><cites>FETCH-LOGICAL-c318t-331e5fce2f64ac5c96e64df3966b30167548c2e2a6f2afba300a4fab803650c03</cites><orcidid>0000-0002-3627-5845 ; 0000-0003-0689-0799 ; 0000-0002-4687-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Zhang, Ruya</creatorcontrib><creatorcontrib>Jiang, Shuaihu</creatorcontrib><creatorcontrib>Rao, Yuan</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Yue, Qin</creatorcontrib><creatorcontrib>Kang, Yijin</creatorcontrib><title>Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><addtitle>GREEN CHEM</addtitle><description>Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a value-added anodic reaction has received tremendous attention. Herein, we employ an in situ electrochemical anion-oxidation strategy to synthesize cobalt oxyhydroxide (CoOOH) nanosheets from cobalt carbonate hydroxide nanoarrays. With the use of CoOOH nanosheets as the anodic electrocatalyst in a hybrid water electrolyzer with 5-hydroxymethylfurfural, a high value product of 2,5-furandicarboxylic acid can be produced on the anode with ∼100% conversion, ∼100% selectivity and ∼100% Faraday efficiency at an operating voltage as low as 1.423 V. CoOOH nanosheets synthesized by an in situ electrochemical anion-oxidation strategy were used as anodic catalysts in a hybrid water electrolyzer.</description><subject>Chemical evolution</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cobalt</subject><subject>Cobalt oxyhydroxide</subject><subject>Decoupling</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Evolution</subject><subject>Green &amp; Sustainable Science &amp; Technology</subject><subject>Green chemistry</subject><subject>Green hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydroxymethylfurfural</subject><subject>Nanosheets</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Selectivity</subject><subject>Water splitting</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkTFPwzAQhSMEEqWwsCNZYgMFznHsJiOE0iJV6lLmyHHOravULnaqqvx6AkFlZbo3fO-d7l0UXVN4oMDyxxqWClLKR9VJNKCpYHGejOD0qEVyHl2EsAagdCTSQbQYN6ha79QKN0bJhlTGbWQIZLddelkbuyTOksLN51NipXVhhdgGYiyRZHWovKnJXrboCfY5zeET_WV0pmUT8Op3DqP31_GimMaz-eSteJrFitGsjRmjyLXCRItUKq5ygSKtNcuFqBhQMeJpphJMpNCJ1JVkADLVssqACQ4K2DC67XO33n3sMLTl2u287VaWCQchupt51lF3PaW8C8GjLrfebKQ_lBTK79bKF5gUP609d3DWw3usnA7KoFV4NACAYCnnOe9UwgrTytY4W7idbTvr_f-tHX3T0z6oI_T3PvYFIleKCQ</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Zhang, Ruya</creator><creator>Jiang, Shuaihu</creator><creator>Rao, Yuan</creator><creator>Chen, Shan</creator><creator>Yue, Qin</creator><creator>Kang, Yijin</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3627-5845</orcidid><orcidid>https://orcid.org/0000-0003-0689-0799</orcidid><orcidid>https://orcid.org/0000-0002-4687-1747</orcidid></search><sort><creationdate>20210329</creationdate><title>Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer</title><author>Zhang, Ruya ; Jiang, Shuaihu ; Rao, Yuan ; Chen, Shan ; Yue, Qin ; Kang, Yijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-331e5fce2f64ac5c96e64df3966b30167548c2e2a6f2afba300a4fab803650c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical evolution</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cobalt</topic><topic>Cobalt oxyhydroxide</topic><topic>Decoupling</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Evolution</topic><topic>Green &amp; Sustainable Science &amp; Technology</topic><topic>Green chemistry</topic><topic>Green hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydroxymethylfurfural</topic><topic>Nanosheets</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Selectivity</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruya</creatorcontrib><creatorcontrib>Jiang, Shuaihu</creatorcontrib><creatorcontrib>Rao, Yuan</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Yue, Qin</creatorcontrib><creatorcontrib>Kang, Yijin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruya</au><au>Jiang, Shuaihu</au><au>Rao, Yuan</au><au>Chen, Shan</au><au>Yue, Qin</au><au>Kang, Yijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><stitle>GREEN CHEM</stitle><date>2021-03-29</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>2525</spage><epage>253</epage><pages>2525-253</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a value-added anodic reaction has received tremendous attention. Herein, we employ an in situ electrochemical anion-oxidation strategy to synthesize cobalt oxyhydroxide (CoOOH) nanosheets from cobalt carbonate hydroxide nanoarrays. With the use of CoOOH nanosheets as the anodic electrocatalyst in a hybrid water electrolyzer with 5-hydroxymethylfurfural, a high value product of 2,5-furandicarboxylic acid can be produced on the anode with ∼100% conversion, ∼100% selectivity and ∼100% Faraday efficiency at an operating voltage as low as 1.423 V. CoOOH nanosheets synthesized by an in situ electrochemical anion-oxidation strategy were used as anodic catalysts in a hybrid water electrolyzer.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0gc04157b</doi><orcidid>https://orcid.org/0000-0002-3627-5845</orcidid><orcidid>https://orcid.org/0000-0003-0689-0799</orcidid><orcidid>https://orcid.org/0000-0002-4687-1747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2021-03, Vol.23 (6), p.2525-253
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2506646358
source Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Chemical evolution
Chemistry
Chemistry, Multidisciplinary
Cobalt
Cobalt oxyhydroxide
Decoupling
Electrocatalysts
Electrochemistry
Evolution
Green & Sustainable Science & Technology
Green chemistry
Green hydrogen
Hydrogen evolution
Hydrogen production
Hydroxymethylfurfural
Nanosheets
Oxidation
Oxygen
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Selectivity
Water splitting
title Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20biomass%20upgrading%20on%20CoOOH%20nanosheets%20in%20a%20hybrid%20water%20electrolyzer&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Zhang,%20Ruya&rft.date=2021-03-29&rft.volume=23&rft.issue=6&rft.spage=2525&rft.epage=253&rft.pages=2525-253&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc04157b&rft_dat=%3Cproquest_cross%3E2506646358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506646358&rft_id=info:pmid/&rfr_iscdi=true