Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer

Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2021-03, Vol.23 (6), p.2525-253
Hauptverfasser: Zhang, Ruya, Jiang, Shuaihu, Rao, Yuan, Chen, Shan, Yue, Qin, Kang, Yijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrocatalytic water splitting is a promising route for green hydrogen production. However, the anodic reaction of oxygen evolution has a high overpotential and low value products are obtained. Therefore, the exploration of decoupling hydrogen evolution and oxygen evolution and coupling with a value-added anodic reaction has received tremendous attention. Herein, we employ an in situ electrochemical anion-oxidation strategy to synthesize cobalt oxyhydroxide (CoOOH) nanosheets from cobalt carbonate hydroxide nanoarrays. With the use of CoOOH nanosheets as the anodic electrocatalyst in a hybrid water electrolyzer with 5-hydroxymethylfurfural, a high value product of 2,5-furandicarboxylic acid can be produced on the anode with ∼100% conversion, ∼100% selectivity and ∼100% Faraday efficiency at an operating voltage as low as 1.423 V. CoOOH nanosheets synthesized by an in situ electrochemical anion-oxidation strategy were used as anodic catalysts in a hybrid water electrolyzer.
ISSN:1463-9262
1463-9270
DOI:10.1039/d0gc04157b