An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben

Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2021-02, Vol.90, p.102004, Article 102004
Hauptverfasser: Üner, S., Dogan, D. Dusunur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102004
container_title Geothermics
container_volume 90
creator Üner, S.
Dogan, D. Dusunur
description Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.
doi_str_mv 10.1016/j.geothermics.2020.102004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506646011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650520302960</els_id><sourcerecordid>2506646011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhq2KSg2l_8GIKxvsjT-SYxVBQKrEBc6WdzxOHDnrYHsrhf_B_63DgsSR02i-nplXLyFvOVtyxtWH43KPqR4wnwKUZc_6a71nTNyQBV_rTbeSWr0iC7bSslOSyTvyupQjY0xLzRbk1-NIw1hxn21FRxvsfLiUADa-p4eLyymm_Zz9PmIjtedzThYOtCbqwxgq0ucUpxPSU3IYYxj3NHnq7RRrB2msjRFn9F-Ej1NwFEKGKdoa0vUFukMXftJdtgOOb8itt7Hgw594T75_-vht-7l7-rr7sn186uxK97XTQmqUAnoO3q8RBQgnNAMmlNpwbbkAzZxFsEKuWwfEAL3nOGwGNUgnVvfk3cxtkn5MWKo5pimP7aTpJVNKKMZ5m9rMU5BTKRm9OedwsvliODNXF8zR_OOCubpgZhfa7nbexSbjOWA2BQKO0MRmhGpcCv9BeQE53pqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506646011</pqid></control><display><type>article</type><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><source>Elsevier ScienceDirect Journals</source><creator>Üner, S. ; Dogan, D. Dusunur</creator><creatorcontrib>Üner, S. ; Dogan, D. Dusunur</creatorcontrib><description>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2020.102004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Active control ; CAD ; Computational fluid dynamics ; Computer aided design ; Finite volume method ; Flow velocity ; Fluid flow ; Fractures ; Geological faults ; Geophysics ; Geothermal ; Geothermal areas ; Geothermal power ; Graben ; Heated water ; High temperature ; Hydrology ; Mathematical models ; Meteoric water ; Numerical simulation ; Rock properties ; Volcanic activity ; Western Anatolia</subject><ispartof>Geothermics, 2021-02, Vol.90, p.102004, Article 102004</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</citedby><cites>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2020.102004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Üner, S.</creatorcontrib><creatorcontrib>Dogan, D. Dusunur</creatorcontrib><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><title>Geothermics</title><description>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</description><subject>Active control</subject><subject>CAD</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Finite volume method</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Geological faults</subject><subject>Geophysics</subject><subject>Geothermal</subject><subject>Geothermal areas</subject><subject>Geothermal power</subject><subject>Graben</subject><subject>Heated water</subject><subject>High temperature</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Meteoric water</subject><subject>Numerical simulation</subject><subject>Rock properties</subject><subject>Volcanic activity</subject><subject>Western Anatolia</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhq2KSg2l_8GIKxvsjT-SYxVBQKrEBc6WdzxOHDnrYHsrhf_B_63DgsSR02i-nplXLyFvOVtyxtWH43KPqR4wnwKUZc_6a71nTNyQBV_rTbeSWr0iC7bSslOSyTvyupQjY0xLzRbk1-NIw1hxn21FRxvsfLiUADa-p4eLyymm_Zz9PmIjtedzThYOtCbqwxgq0ucUpxPSU3IYYxj3NHnq7RRrB2msjRFn9F-Ej1NwFEKGKdoa0vUFukMXftJdtgOOb8itt7Hgw594T75_-vht-7l7-rr7sn186uxK97XTQmqUAnoO3q8RBQgnNAMmlNpwbbkAzZxFsEKuWwfEAL3nOGwGNUgnVvfk3cxtkn5MWKo5pimP7aTpJVNKKMZ5m9rMU5BTKRm9OedwsvliODNXF8zR_OOCubpgZhfa7nbexSbjOWA2BQKO0MRmhGpcCv9BeQE53pqF</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Üner, S.</creator><creator>Dogan, D. Dusunur</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202102</creationdate><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><author>Üner, S. ; Dogan, D. Dusunur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>CAD</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Finite volume method</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Geological faults</topic><topic>Geophysics</topic><topic>Geothermal</topic><topic>Geothermal areas</topic><topic>Geothermal power</topic><topic>Graben</topic><topic>Heated water</topic><topic>High temperature</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Meteoric water</topic><topic>Numerical simulation</topic><topic>Rock properties</topic><topic>Volcanic activity</topic><topic>Western Anatolia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Üner, S.</creatorcontrib><creatorcontrib>Dogan, D. Dusunur</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Üner, S.</au><au>Dogan, D. Dusunur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</atitle><jtitle>Geothermics</jtitle><date>2021-02</date><risdate>2021</risdate><volume>90</volume><spage>102004</spage><pages>102004-</pages><artnum>102004</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2020.102004</doi></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2021-02, Vol.90, p.102004, Article 102004
issn 0375-6505
1879-3576
language eng
recordid cdi_proquest_journals_2506646011
source Elsevier ScienceDirect Journals
subjects Active control
CAD
Computational fluid dynamics
Computer aided design
Finite volume method
Flow velocity
Fluid flow
Fractures
Geological faults
Geophysics
Geothermal
Geothermal areas
Geothermal power
Graben
Heated water
High temperature
Hydrology
Mathematical models
Meteoric water
Numerical simulation
Rock properties
Volcanic activity
Western Anatolia
title An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20geophysical,%20hydrological,%20thermal%20approach%20to%20finite%20volume%20modelling%20of%20fault-controlled%20geothermal%20fluid%20circulation%20in%20Gediz%20Graben&rft.jtitle=Geothermics&rft.au=%C3%9Cner,%20S.&rft.date=2021-02&rft.volume=90&rft.spage=102004&rft.pages=102004-&rft.artnum=102004&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2020.102004&rft_dat=%3Cproquest_cross%3E2506646011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506646011&rft_id=info:pmid/&rft_els_id=S0375650520302960&rfr_iscdi=true