An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben
Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those syste...
Gespeichert in:
Veröffentlicht in: | Geothermics 2021-02, Vol.90, p.102004, Article 102004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102004 |
container_title | Geothermics |
container_volume | 90 |
creator | Üner, S. Dogan, D. Dusunur |
description | Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas. |
doi_str_mv | 10.1016/j.geothermics.2020.102004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506646011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650520302960</els_id><sourcerecordid>2506646011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhq2KSg2l_8GIKxvsjT-SYxVBQKrEBc6WdzxOHDnrYHsrhf_B_63DgsSR02i-nplXLyFvOVtyxtWH43KPqR4wnwKUZc_6a71nTNyQBV_rTbeSWr0iC7bSslOSyTvyupQjY0xLzRbk1-NIw1hxn21FRxvsfLiUADa-p4eLyymm_Zz9PmIjtedzThYOtCbqwxgq0ucUpxPSU3IYYxj3NHnq7RRrB2msjRFn9F-Ej1NwFEKGKdoa0vUFukMXftJdtgOOb8itt7Hgw594T75_-vht-7l7-rr7sn186uxK97XTQmqUAnoO3q8RBQgnNAMmlNpwbbkAzZxFsEKuWwfEAL3nOGwGNUgnVvfk3cxtkn5MWKo5pimP7aTpJVNKKMZ5m9rMU5BTKRm9OedwsvliODNXF8zR_OOCubpgZhfa7nbexSbjOWA2BQKO0MRmhGpcCv9BeQE53pqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506646011</pqid></control><display><type>article</type><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><source>Elsevier ScienceDirect Journals</source><creator>Üner, S. ; Dogan, D. Dusunur</creator><creatorcontrib>Üner, S. ; Dogan, D. Dusunur</creatorcontrib><description>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2020.102004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Active control ; CAD ; Computational fluid dynamics ; Computer aided design ; Finite volume method ; Flow velocity ; Fluid flow ; Fractures ; Geological faults ; Geophysics ; Geothermal ; Geothermal areas ; Geothermal power ; Graben ; Heated water ; High temperature ; Hydrology ; Mathematical models ; Meteoric water ; Numerical simulation ; Rock properties ; Volcanic activity ; Western Anatolia</subject><ispartof>Geothermics, 2021-02, Vol.90, p.102004, Article 102004</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</citedby><cites>FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2020.102004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Üner, S.</creatorcontrib><creatorcontrib>Dogan, D. Dusunur</creatorcontrib><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><title>Geothermics</title><description>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</description><subject>Active control</subject><subject>CAD</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Finite volume method</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Geological faults</subject><subject>Geophysics</subject><subject>Geothermal</subject><subject>Geothermal areas</subject><subject>Geothermal power</subject><subject>Graben</subject><subject>Heated water</subject><subject>High temperature</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Meteoric water</subject><subject>Numerical simulation</subject><subject>Rock properties</subject><subject>Volcanic activity</subject><subject>Western Anatolia</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhq2KSg2l_8GIKxvsjT-SYxVBQKrEBc6WdzxOHDnrYHsrhf_B_63DgsSR02i-nplXLyFvOVtyxtWH43KPqR4wnwKUZc_6a71nTNyQBV_rTbeSWr0iC7bSslOSyTvyupQjY0xLzRbk1-NIw1hxn21FRxvsfLiUADa-p4eLyymm_Zz9PmIjtedzThYOtCbqwxgq0ucUpxPSU3IYYxj3NHnq7RRrB2msjRFn9F-Ej1NwFEKGKdoa0vUFukMXftJdtgOOb8itt7Hgw594T75_-vht-7l7-rr7sn186uxK97XTQmqUAnoO3q8RBQgnNAMmlNpwbbkAzZxFsEKuWwfEAL3nOGwGNUgnVvfk3cxtkn5MWKo5pimP7aTpJVNKKMZ5m9rMU5BTKRm9OedwsvliODNXF8zR_OOCubpgZhfa7nbexSbjOWA2BQKO0MRmhGpcCv9BeQE53pqF</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Üner, S.</creator><creator>Dogan, D. Dusunur</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202102</creationdate><title>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</title><author>Üner, S. ; Dogan, D. Dusunur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-7457e54c21cff8ee4c4d470c0466917a14c70daeca458d47c4bc2f1eb9b6b5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>CAD</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Finite volume method</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Geological faults</topic><topic>Geophysics</topic><topic>Geothermal</topic><topic>Geothermal areas</topic><topic>Geothermal power</topic><topic>Graben</topic><topic>Heated water</topic><topic>High temperature</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Meteoric water</topic><topic>Numerical simulation</topic><topic>Rock properties</topic><topic>Volcanic activity</topic><topic>Western Anatolia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Üner, S.</creatorcontrib><creatorcontrib>Dogan, D. Dusunur</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Üner, S.</au><au>Dogan, D. Dusunur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben</atitle><jtitle>Geothermics</jtitle><date>2021-02</date><risdate>2021</risdate><volume>90</volume><spage>102004</spage><pages>102004-</pages><artnum>102004</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>Many high temperature geothermal fields generally occur at settings of recent active tectonism or volcanism accompanied by the active faults and fractures. It is well known that the structural controls such as topography, active faults, etc., have a major effect on fluid flow pathways in those systems. In this paper, a complete hydro-thermo-geophysical model is created for the first time in the Gediz Graben, Western Anatolia. The finite volume method is used for numerical simulations by implementing a finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in the model are taken from previous studies. Fluid flow velocity vectors and resulted temperature patterns for the region are calculated and presented. Our simulations demonstrate that the low-angle Master Graben Boundary Fault (MGBF) has three dominant roles 1) transporting the meteoric water to the depths; 2) distributing the heated geothermal water into the basin with inner basin faults, 3) transmitting the heated water to the surface. The model in this work can be easily adopted and extended to explore the possible reservoir structures in other geothermal areas.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2020.102004</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-6505 |
ispartof | Geothermics, 2021-02, Vol.90, p.102004, Article 102004 |
issn | 0375-6505 1879-3576 |
language | eng |
recordid | cdi_proquest_journals_2506646011 |
source | Elsevier ScienceDirect Journals |
subjects | Active control CAD Computational fluid dynamics Computer aided design Finite volume method Flow velocity Fluid flow Fractures Geological faults Geophysics Geothermal Geothermal areas Geothermal power Graben Heated water High temperature Hydrology Mathematical models Meteoric water Numerical simulation Rock properties Volcanic activity Western Anatolia |
title | An integrated geophysical, hydrological, thermal approach to finite volume modelling of fault-controlled geothermal fluid circulation in Gediz Graben |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20geophysical,%20hydrological,%20thermal%20approach%20to%20finite%20volume%20modelling%20of%20fault-controlled%20geothermal%20fluid%20circulation%20in%20Gediz%20Graben&rft.jtitle=Geothermics&rft.au=%C3%9Cner,%20S.&rft.date=2021-02&rft.volume=90&rft.spage=102004&rft.pages=102004-&rft.artnum=102004&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2020.102004&rft_dat=%3Cproquest_cross%3E2506646011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506646011&rft_id=info:pmid/&rft_els_id=S0375650520302960&rfr_iscdi=true |