A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys

[Display omitted] •Mechanical properties of additively manufactured (AM) Al alloys are investigated.•Chemical composition & stress relief scheme affect the microstructure of AlSi10Mg.•Scalmalloy has high strength and ductility due to its nano-size microstructure.•Scalmalloy exhibits superior fat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2021-05, Vol.146, p.106165, Article 106165
Hauptverfasser: Muhammad, Muztahid, Nezhadfar, P.D., Thompson, Spencer, Saharan, Ankit, Phan, Nam, Shamsaei, Nima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106165
container_title International journal of fatigue
container_volume 146
creator Muhammad, Muztahid
Nezhadfar, P.D.
Thompson, Spencer
Saharan, Ankit
Phan, Nam
Shamsaei, Nima
description [Display omitted] •Mechanical properties of additively manufactured (AM) Al alloys are investigated.•Chemical composition & stress relief scheme affect the microstructure of AlSi10Mg.•Scalmalloy has high strength and ductility due to its nano-size microstructure.•Scalmalloy exhibits superior fatigue resistance among the Al alloys investigated.•Surface notches and volumetric defects are the major crack initiation sources. Due to exceptional strength/stiffness to weight ratio, aluminum (Al) alloys are being extensively used in many exclusive applications. The microstructure, and consequently, the mechanical properties of additively manufactured (AM) Al alloys are expected to vary compared to those of their conventionally manufactured counterparts due to the unique thermal history experienced during the additive manufacturing (AM) processes. Therefore, it is critical to understand the microstructure and characterize the mechanical properties of AM Al alloys to verify if they meet the requirements for being deployed in the fatigue critical applications. In this study, the microstructure and mechanical properties (i.e., tensile and fatigue) of laser beam powder bed fused (LB-PBF) LPW AlSi10Mg, EOS AlSi10Mg, Scalmalloy, and QuesTek Al alloys are characterized. Room temperature quasi-static tensile tests are conducted at the strain rate of 0.001 s−1 on machined surface specimens, and uniaxial fully-reversed strain-controlled fatigue tests are performed on both as-built and machined surface specimens. Some differences in microstructure and tensile properties of the LB-PBF AlSi10Mg fabricated with LPW and EOS powders are noticeable. Among the Al alloys, the LB-PBF Scalmalloy possesses the highest strength and high ductility as well as the highest fatigue resistance credited to its ultrafine/nano-size grains and precipitates. For all the LB-PBF Al alloys investigated, surface micro-notches and volumetric defects (pores, lack of fusion) are found to be the primary sources of fatigue crack initiation in the as-built and machined surface conditions, respectively.
doi_str_mv 10.1016/j.ijfatigue.2021.106165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506625971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321000256</els_id><sourcerecordid>2506625971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5db7cf159303f7354617c1518d8e593096a454e7308b4f76b6a6bb606725c1213</originalsourceid><addsrcrecordid>eNqNkcFu3CAQhlHUSN0mfYYi9Vh5A9iAfVyt2rRSpFzaM8J4aLBs2ADeat--OI5ybSUkhtF8_8z8IPSJkj0lVNyNezdand3vBfaMMFqyggp-hXa0lV1VN5y9QztCG1ZRyur36ENKIyGkI5Lv0PmATZhPOhaFM2Dnz5CKVnkFj8vJT4BnZ2JIOS4mLxGw9gOewTxp74ye8CmGE8TsIOFgsR4GtypNFzxrv1j9wgxYT8vs_DKXYAqXdIuurZ4SfHy9b9Cvb19_Hr9XD4_3P46Hh8rUncwVH3ppLOVdTWora94IKg3ltB1aWJOd0A1vQNak7RsrRS-06HtBhGTcUEbrG_R50y1TPi9lNTWGJfrSUjFOhGC8k2uV3KrWPVMEq07RzTpeFCVqNVmN6s1ktZqsNpML-WUj_0AfbDIOvIE3urgsWJmtaUtE1j7t_1cfXX75hWNYfC7oYUOhuHV2ENUrPrgIJqshuH8O-xctAKwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506625971</pqid></control><display><type>article</type><title>A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Muhammad, Muztahid ; Nezhadfar, P.D. ; Thompson, Spencer ; Saharan, Ankit ; Phan, Nam ; Shamsaei, Nima</creator><creatorcontrib>Muhammad, Muztahid ; Nezhadfar, P.D. ; Thompson, Spencer ; Saharan, Ankit ; Phan, Nam ; Shamsaei, Nima</creatorcontrib><description>[Display omitted] •Mechanical properties of additively manufactured (AM) Al alloys are investigated.•Chemical composition &amp; stress relief scheme affect the microstructure of AlSi10Mg.•Scalmalloy has high strength and ductility due to its nano-size microstructure.•Scalmalloy exhibits superior fatigue resistance among the Al alloys investigated.•Surface notches and volumetric defects are the major crack initiation sources. Due to exceptional strength/stiffness to weight ratio, aluminum (Al) alloys are being extensively used in many exclusive applications. The microstructure, and consequently, the mechanical properties of additively manufactured (AM) Al alloys are expected to vary compared to those of their conventionally manufactured counterparts due to the unique thermal history experienced during the additive manufacturing (AM) processes. Therefore, it is critical to understand the microstructure and characterize the mechanical properties of AM Al alloys to verify if they meet the requirements for being deployed in the fatigue critical applications. In this study, the microstructure and mechanical properties (i.e., tensile and fatigue) of laser beam powder bed fused (LB-PBF) LPW AlSi10Mg, EOS AlSi10Mg, Scalmalloy, and QuesTek Al alloys are characterized. Room temperature quasi-static tensile tests are conducted at the strain rate of 0.001 s−1 on machined surface specimens, and uniaxial fully-reversed strain-controlled fatigue tests are performed on both as-built and machined surface specimens. Some differences in microstructure and tensile properties of the LB-PBF AlSi10Mg fabricated with LPW and EOS powders are noticeable. Among the Al alloys, the LB-PBF Scalmalloy possesses the highest strength and high ductility as well as the highest fatigue resistance credited to its ultrafine/nano-size grains and precipitates. For all the LB-PBF Al alloys investigated, surface micro-notches and volumetric defects (pores, lack of fusion) are found to be the primary sources of fatigue crack initiation in the as-built and machined surface conditions, respectively.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106165</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Additive manufacturing ; Aluminum ; Aluminum base alloys ; Crack initiation ; Crack propagation ; Engineering ; Engineering, Mechanical ; Fatigue ; Fatigue failure ; Fatigue strength ; Fatigue tests ; Fracture mechanics ; Laser beam powder bed fusion (LB-PBF) ; Laser beams ; Materials fatigue ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Microstructure ; Notches ; Powder beds ; Precipitates ; Room temperature ; Science &amp; Technology ; Stiffness ; Strain rate ; Technology ; Tensile properties ; Tensile tests ; Ultrafines</subject><ispartof>International journal of fatigue, 2021-05, Vol.146, p.106165, Article 106165</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>72</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000623084800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c397t-5db7cf159303f7354617c1518d8e593096a454e7308b4f76b6a6bb606725c1213</citedby><cites>FETCH-LOGICAL-c397t-5db7cf159303f7354617c1518d8e593096a454e7308b4f76b6a6bb606725c1213</cites><orcidid>0000-0003-0325-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2021.106165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Muhammad, Muztahid</creatorcontrib><creatorcontrib>Nezhadfar, P.D.</creatorcontrib><creatorcontrib>Thompson, Spencer</creatorcontrib><creatorcontrib>Saharan, Ankit</creatorcontrib><creatorcontrib>Phan, Nam</creatorcontrib><creatorcontrib>Shamsaei, Nima</creatorcontrib><title>A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys</title><title>International journal of fatigue</title><addtitle>INT J FATIGUE</addtitle><description>[Display omitted] •Mechanical properties of additively manufactured (AM) Al alloys are investigated.•Chemical composition &amp; stress relief scheme affect the microstructure of AlSi10Mg.•Scalmalloy has high strength and ductility due to its nano-size microstructure.•Scalmalloy exhibits superior fatigue resistance among the Al alloys investigated.•Surface notches and volumetric defects are the major crack initiation sources. Due to exceptional strength/stiffness to weight ratio, aluminum (Al) alloys are being extensively used in many exclusive applications. The microstructure, and consequently, the mechanical properties of additively manufactured (AM) Al alloys are expected to vary compared to those of their conventionally manufactured counterparts due to the unique thermal history experienced during the additive manufacturing (AM) processes. Therefore, it is critical to understand the microstructure and characterize the mechanical properties of AM Al alloys to verify if they meet the requirements for being deployed in the fatigue critical applications. In this study, the microstructure and mechanical properties (i.e., tensile and fatigue) of laser beam powder bed fused (LB-PBF) LPW AlSi10Mg, EOS AlSi10Mg, Scalmalloy, and QuesTek Al alloys are characterized. Room temperature quasi-static tensile tests are conducted at the strain rate of 0.001 s−1 on machined surface specimens, and uniaxial fully-reversed strain-controlled fatigue tests are performed on both as-built and machined surface specimens. Some differences in microstructure and tensile properties of the LB-PBF AlSi10Mg fabricated with LPW and EOS powders are noticeable. Among the Al alloys, the LB-PBF Scalmalloy possesses the highest strength and high ductility as well as the highest fatigue resistance credited to its ultrafine/nano-size grains and precipitates. For all the LB-PBF Al alloys investigated, surface micro-notches and volumetric defects (pores, lack of fusion) are found to be the primary sources of fatigue crack initiation in the as-built and machined surface conditions, respectively.</description><subject>Additive manufacturing</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Laser beam powder bed fusion (LB-PBF)</subject><subject>Laser beams</subject><subject>Materials fatigue</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Notches</subject><subject>Powder beds</subject><subject>Precipitates</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>Stiffness</subject><subject>Strain rate</subject><subject>Technology</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Ultrafines</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkcFu3CAQhlHUSN0mfYYi9Vh5A9iAfVyt2rRSpFzaM8J4aLBs2ADeat--OI5ybSUkhtF8_8z8IPSJkj0lVNyNezdand3vBfaMMFqyggp-hXa0lV1VN5y9QztCG1ZRyur36ENKIyGkI5Lv0PmATZhPOhaFM2Dnz5CKVnkFj8vJT4BnZ2JIOS4mLxGw9gOewTxp74ye8CmGE8TsIOFgsR4GtypNFzxrv1j9wgxYT8vs_DKXYAqXdIuurZ4SfHy9b9Cvb19_Hr9XD4_3P46Hh8rUncwVH3ppLOVdTWora94IKg3ltB1aWJOd0A1vQNak7RsrRS-06HtBhGTcUEbrG_R50y1TPi9lNTWGJfrSUjFOhGC8k2uV3KrWPVMEq07RzTpeFCVqNVmN6s1ktZqsNpML-WUj_0AfbDIOvIE3urgsWJmtaUtE1j7t_1cfXX75hWNYfC7oYUOhuHV2ENUrPrgIJqshuH8O-xctAKwn</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Muhammad, Muztahid</creator><creator>Nezhadfar, P.D.</creator><creator>Thompson, Spencer</creator><creator>Saharan, Ankit</creator><creator>Phan, Nam</creator><creator>Shamsaei, Nima</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0325-7314</orcidid></search><sort><creationdate>202105</creationdate><title>A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys</title><author>Muhammad, Muztahid ; Nezhadfar, P.D. ; Thompson, Spencer ; Saharan, Ankit ; Phan, Nam ; Shamsaei, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5db7cf159303f7354617c1518d8e593096a454e7308b4f76b6a6bb606725c1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Laser beam powder bed fusion (LB-PBF)</topic><topic>Laser beams</topic><topic>Materials fatigue</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Notches</topic><topic>Powder beds</topic><topic>Precipitates</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>Stiffness</topic><topic>Strain rate</topic><topic>Technology</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Muztahid</creatorcontrib><creatorcontrib>Nezhadfar, P.D.</creatorcontrib><creatorcontrib>Thompson, Spencer</creatorcontrib><creatorcontrib>Saharan, Ankit</creatorcontrib><creatorcontrib>Phan, Nam</creatorcontrib><creatorcontrib>Shamsaei, Nima</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Muztahid</au><au>Nezhadfar, P.D.</au><au>Thompson, Spencer</au><au>Saharan, Ankit</au><au>Phan, Nam</au><au>Shamsaei, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys</atitle><jtitle>International journal of fatigue</jtitle><stitle>INT J FATIGUE</stitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>106165</spage><pages>106165-</pages><artnum>106165</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>[Display omitted] •Mechanical properties of additively manufactured (AM) Al alloys are investigated.•Chemical composition &amp; stress relief scheme affect the microstructure of AlSi10Mg.•Scalmalloy has high strength and ductility due to its nano-size microstructure.•Scalmalloy exhibits superior fatigue resistance among the Al alloys investigated.•Surface notches and volumetric defects are the major crack initiation sources. Due to exceptional strength/stiffness to weight ratio, aluminum (Al) alloys are being extensively used in many exclusive applications. The microstructure, and consequently, the mechanical properties of additively manufactured (AM) Al alloys are expected to vary compared to those of their conventionally manufactured counterparts due to the unique thermal history experienced during the additive manufacturing (AM) processes. Therefore, it is critical to understand the microstructure and characterize the mechanical properties of AM Al alloys to verify if they meet the requirements for being deployed in the fatigue critical applications. In this study, the microstructure and mechanical properties (i.e., tensile and fatigue) of laser beam powder bed fused (LB-PBF) LPW AlSi10Mg, EOS AlSi10Mg, Scalmalloy, and QuesTek Al alloys are characterized. Room temperature quasi-static tensile tests are conducted at the strain rate of 0.001 s−1 on machined surface specimens, and uniaxial fully-reversed strain-controlled fatigue tests are performed on both as-built and machined surface specimens. Some differences in microstructure and tensile properties of the LB-PBF AlSi10Mg fabricated with LPW and EOS powders are noticeable. Among the Al alloys, the LB-PBF Scalmalloy possesses the highest strength and high ductility as well as the highest fatigue resistance credited to its ultrafine/nano-size grains and precipitates. For all the LB-PBF Al alloys investigated, surface micro-notches and volumetric defects (pores, lack of fusion) are found to be the primary sources of fatigue crack initiation in the as-built and machined surface conditions, respectively.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106165</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0325-7314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2021-05, Vol.146, p.106165, Article 106165
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2506625971
source Access via ScienceDirect (Elsevier)
subjects Additive manufacturing
Aluminum
Aluminum base alloys
Crack initiation
Crack propagation
Engineering
Engineering, Mechanical
Fatigue
Fatigue failure
Fatigue strength
Fatigue tests
Fracture mechanics
Laser beam powder bed fusion (LB-PBF)
Laser beams
Materials fatigue
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Microstructure
Notches
Powder beds
Precipitates
Room temperature
Science & Technology
Stiffness
Strain rate
Technology
Tensile properties
Tensile tests
Ultrafines
title A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20investigation%20on%20the%20microstructure%20and%20mechanical%20properties%20of%20additively%20manufactured%20aluminum%20alloys&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Muhammad,%20Muztahid&rft.date=2021-05&rft.volume=146&rft.spage=106165&rft.pages=106165-&rft.artnum=106165&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106165&rft_dat=%3Cproquest_cross%3E2506625971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506625971&rft_id=info:pmid/&rft_els_id=S0142112321000256&rfr_iscdi=true