In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels

Heteroatom-doped Pt-based nanocrystals have generated considerable interest and hold great prospects in heterocatalysis. However, engineering the superficial atomic configurations of these nanocrystals via in situ surface doping remains exceedingly challenging. Herein, we propose a one-pot, in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2021-05, Vol.64 (5), p.1139-1149
Hauptverfasser: Wang, Wei, Chen, Xuejiao, Ye, Jinyu, Zhang, Yuhui, Han, Yanchen, Chen, Xiaowei, Liu, Kai, Xie, Shuifen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 5
container_start_page 1139
container_title Science China materials
container_volume 64
creator Wang, Wei
Chen, Xuejiao
Ye, Jinyu
Zhang, Yuhui
Han, Yanchen
Chen, Xiaowei
Liu, Kai
Xie, Shuifen
description Heteroatom-doped Pt-based nanocrystals have generated considerable interest and hold great prospects in heterocatalysis. However, engineering the superficial atomic configurations of these nanocrystals via in situ surface doping remains exceedingly challenging. Herein, we propose a one-pot, in situ surface doping chemical synthesis protocol to prepare quatermetallic PtNiCoRh dendritic nanocrystals as versatile and active catalysts for the electrooxidation of C 1 fuels. Leveraging the selective coordination effect between ascorbic acid and Rh 3+ ions, the doping of trace Rh atoms can be guided specifically at the near-surface of PtNiCoRh nanocatalysts. Electrocatalytic tests indicate that Pt 67 Ni 16 Co 16 Rh 1 nanocrystals with in situ trace Rh-doped surface exhibit substantially enhanced activity, durability, and CO tolerance for the electrooxidation of methanol, formaldehyde, and formic acid. In situ Fourier transform infrared spectroscopy provides molecular-level insight into the exceptional performance of these nanocatalysts. The surface incorporation of anti-corrosive Rh atoms enables the transfer of CO intermediates from the atop Pt sites to the bridged Rh-Pt surface sites, thereby facilitating the elimination of these poisoning species from the catalyst surface. This study presents an effective in situ surface doping strategy which can enable the design of more atom-economic heterocatalysts.
doi_str_mv 10.1007/s40843-020-1516-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506624665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506624665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f376469f5e63bd3feacdfe87e80e9952490ba253b19f709a0b2049563501f44c3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWLQP4C7gOnpynclSBi-FokV0HTIziU5pJzXJgH17Uyq4cnXO4vvP5UPoisINBahuk4BacAIMCJVUEXqCZoxqTYQEelp60JLUjKlzNE9pDQBUSUp1PUOrxYjTkCecpuht50gfdq7Hq_w8NOH1E492DF3cp2w3Ce9i2IbssNu4LscQvofe5iGMOHjcUOwnt0mX6MwX1s1_6wV6f7h_a57I8uVx0dwtSce1ysTzSgmlvXSKtz33zna9d3XlanBaSyY0tJZJ3lLtK9AWWgZCS8XLR16Ijl-g6-PcctTX5FI26zDFsaw0TIJSTCglC0WPVBdDStF5s4vD1sa9oWAO7szRnSnuzMGdoSXDjplU2PHDxb_J_4d-AKIXcIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506624665</pqid></control><display><type>article</type><title>In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Wei ; Chen, Xuejiao ; Ye, Jinyu ; Zhang, Yuhui ; Han, Yanchen ; Chen, Xiaowei ; Liu, Kai ; Xie, Shuifen</creator><creatorcontrib>Wang, Wei ; Chen, Xuejiao ; Ye, Jinyu ; Zhang, Yuhui ; Han, Yanchen ; Chen, Xiaowei ; Liu, Kai ; Xie, Shuifen</creatorcontrib><description>Heteroatom-doped Pt-based nanocrystals have generated considerable interest and hold great prospects in heterocatalysis. However, engineering the superficial atomic configurations of these nanocrystals via in situ surface doping remains exceedingly challenging. Herein, we propose a one-pot, in situ surface doping chemical synthesis protocol to prepare quatermetallic PtNiCoRh dendritic nanocrystals as versatile and active catalysts for the electrooxidation of C 1 fuels. Leveraging the selective coordination effect between ascorbic acid and Rh 3+ ions, the doping of trace Rh atoms can be guided specifically at the near-surface of PtNiCoRh nanocatalysts. Electrocatalytic tests indicate that Pt 67 Ni 16 Co 16 Rh 1 nanocrystals with in situ trace Rh-doped surface exhibit substantially enhanced activity, durability, and CO tolerance for the electrooxidation of methanol, formaldehyde, and formic acid. In situ Fourier transform infrared spectroscopy provides molecular-level insight into the exceptional performance of these nanocatalysts. The surface incorporation of anti-corrosive Rh atoms enables the transfer of CO intermediates from the atop Pt sites to the bridged Rh-Pt surface sites, thereby facilitating the elimination of these poisoning species from the catalyst surface. This study presents an effective in situ surface doping strategy which can enable the design of more atom-economic heterocatalysts.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-020-1516-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Ascorbic acid ; Carbon monoxide ; Catalysts ; Chemical synthesis ; Chemistry and Materials Science ; Chemistry/Food Science ; Doping ; Formic acid ; Fourier transforms ; Fuels ; Materials Science ; Nanocrystals ; Rhodium</subject><ispartof>Science China materials, 2021-05, Vol.64 (5), p.1139-1149</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f376469f5e63bd3feacdfe87e80e9952490ba253b19f709a0b2049563501f44c3</citedby><cites>FETCH-LOGICAL-c396t-f376469f5e63bd3feacdfe87e80e9952490ba253b19f709a0b2049563501f44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-020-1516-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-020-1516-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Ye, Jinyu</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Han, Yanchen</creatorcontrib><creatorcontrib>Chen, Xiaowei</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><title>In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Heteroatom-doped Pt-based nanocrystals have generated considerable interest and hold great prospects in heterocatalysis. However, engineering the superficial atomic configurations of these nanocrystals via in situ surface doping remains exceedingly challenging. Herein, we propose a one-pot, in situ surface doping chemical synthesis protocol to prepare quatermetallic PtNiCoRh dendritic nanocrystals as versatile and active catalysts for the electrooxidation of C 1 fuels. Leveraging the selective coordination effect between ascorbic acid and Rh 3+ ions, the doping of trace Rh atoms can be guided specifically at the near-surface of PtNiCoRh nanocatalysts. Electrocatalytic tests indicate that Pt 67 Ni 16 Co 16 Rh 1 nanocrystals with in situ trace Rh-doped surface exhibit substantially enhanced activity, durability, and CO tolerance for the electrooxidation of methanol, formaldehyde, and formic acid. In situ Fourier transform infrared spectroscopy provides molecular-level insight into the exceptional performance of these nanocatalysts. The surface incorporation of anti-corrosive Rh atoms enables the transfer of CO intermediates from the atop Pt sites to the bridged Rh-Pt surface sites, thereby facilitating the elimination of these poisoning species from the catalyst surface. This study presents an effective in situ surface doping strategy which can enable the design of more atom-economic heterocatalysts.</description><subject>Ascorbic acid</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Doping</subject><subject>Formic acid</subject><subject>Fourier transforms</subject><subject>Fuels</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Rhodium</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWLQP4C7gOnpynclSBi-FokV0HTIziU5pJzXJgH17Uyq4cnXO4vvP5UPoisINBahuk4BacAIMCJVUEXqCZoxqTYQEelp60JLUjKlzNE9pDQBUSUp1PUOrxYjTkCecpuht50gfdq7Hq_w8NOH1E492DF3cp2w3Ce9i2IbssNu4LscQvofe5iGMOHjcUOwnt0mX6MwX1s1_6wV6f7h_a57I8uVx0dwtSce1ysTzSgmlvXSKtz33zna9d3XlanBaSyY0tJZJ3lLtK9AWWgZCS8XLR16Ijl-g6-PcctTX5FI26zDFsaw0TIJSTCglC0WPVBdDStF5s4vD1sa9oWAO7szRnSnuzMGdoSXDjplU2PHDxb_J_4d-AKIXcIY</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wang, Wei</creator><creator>Chen, Xuejiao</creator><creator>Ye, Jinyu</creator><creator>Zhang, Yuhui</creator><creator>Han, Yanchen</creator><creator>Chen, Xiaowei</creator><creator>Liu, Kai</creator><creator>Xie, Shuifen</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels</title><author>Wang, Wei ; Chen, Xuejiao ; Ye, Jinyu ; Zhang, Yuhui ; Han, Yanchen ; Chen, Xiaowei ; Liu, Kai ; Xie, Shuifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f376469f5e63bd3feacdfe87e80e9952490ba253b19f709a0b2049563501f44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ascorbic acid</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Doping</topic><topic>Formic acid</topic><topic>Fourier transforms</topic><topic>Fuels</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Rhodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Ye, Jinyu</creatorcontrib><creatorcontrib>Zhang, Yuhui</creatorcontrib><creatorcontrib>Han, Yanchen</creatorcontrib><creatorcontrib>Chen, Xiaowei</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Chen, Xuejiao</au><au>Ye, Jinyu</au><au>Zhang, Yuhui</au><au>Han, Yanchen</au><au>Chen, Xiaowei</au><au>Liu, Kai</au><au>Xie, Shuifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>1139</spage><epage>1149</epage><pages>1139-1149</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Heteroatom-doped Pt-based nanocrystals have generated considerable interest and hold great prospects in heterocatalysis. However, engineering the superficial atomic configurations of these nanocrystals via in situ surface doping remains exceedingly challenging. Herein, we propose a one-pot, in situ surface doping chemical synthesis protocol to prepare quatermetallic PtNiCoRh dendritic nanocrystals as versatile and active catalysts for the electrooxidation of C 1 fuels. Leveraging the selective coordination effect between ascorbic acid and Rh 3+ ions, the doping of trace Rh atoms can be guided specifically at the near-surface of PtNiCoRh nanocatalysts. Electrocatalytic tests indicate that Pt 67 Ni 16 Co 16 Rh 1 nanocrystals with in situ trace Rh-doped surface exhibit substantially enhanced activity, durability, and CO tolerance for the electrooxidation of methanol, formaldehyde, and formic acid. In situ Fourier transform infrared spectroscopy provides molecular-level insight into the exceptional performance of these nanocatalysts. The surface incorporation of anti-corrosive Rh atoms enables the transfer of CO intermediates from the atop Pt sites to the bridged Rh-Pt surface sites, thereby facilitating the elimination of these poisoning species from the catalyst surface. This study presents an effective in situ surface doping strategy which can enable the design of more atom-economic heterocatalysts.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-020-1516-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2021-05, Vol.64 (5), p.1139-1149
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2506624665
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Ascorbic acid
Carbon monoxide
Catalysts
Chemical synthesis
Chemistry and Materials Science
Chemistry/Food Science
Doping
Formic acid
Fourier transforms
Fuels
Materials Science
Nanocrystals
Rhodium
title In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20surface-doped%20PtNiCoRh%20nanocrystals%20promote%20electrooxidation%20of%20C1%20fuels&rft.jtitle=Science%20China%20materials&rft.au=Wang,%20Wei&rft.date=2021-05-01&rft.volume=64&rft.issue=5&rft.spage=1139&rft.epage=1149&rft.pages=1139-1149&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-020-1516-1&rft_dat=%3Cproquest_cross%3E2506624665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506624665&rft_id=info:pmid/&rfr_iscdi=true