Corrective Shared Autonomy for Addressing Task Variability
Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. Howeve...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.3720-3727 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3727 |
---|---|
container_issue | 2 |
container_start_page | 3720 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Hagenow, Michael Senft, Emmanuel Radwin, Robert Gleicher, Michael Mutlu, Bilge Zinn, Michael |
description | Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing. |
doi_str_mv | 10.1109/LRA.2021.3064500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2506604809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372859</ieee_id><sourcerecordid>2506604809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</originalsourceid><addsrcrecordid>eNpdkU1rFEEQhhtRTFhzFwQZ8JLLrtXf0x6EZfELFgSNXpuamZqk4-x07J4J7L-3w65L9FQF9dRLFQ9jLzmsOAf3dvttvRIg-EqCURrgCTsX0tqltMY8fdSfsYucbwGAa2Gl08_ZmZS1cVaZc_ZuE1Oidgr3VH2_wURdtZ6nOMbdvupjqtZdlyjnMF5XV5h_VT8xBWzCEKb9C_asxyHTxbEu2I-PH642n5fbr5--bNbbZauUm5adsgBGSMKu41Rr0WPba1l6alrkihQqbLRwiKT63hrsjULhpNCaGtXIBXt_yL2bmx11LY1TwsHfpbDDtPcRg_93MoYbfx3vfQ0anLYl4PIYkOLvmfLkdyG3NAw4UpyzF5prsEKXIxfszX_obZzTWN4rFBgDqgZXKDhQbYo5J-pPx3DwD258ceMf3Pijm7Ly-vETp4W_Jgrw6gAEIjqNnbSi1k7-AS3Gkzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506604809</pqid></control><display><type>article</type><title>Corrective Shared Autonomy for Addressing Task Variability</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creatorcontrib><description>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3064500</identifier><identifier>PMID: 33869746</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autonomy ; Fasteners ; Force ; Human-robot collaboration ; Kinematics ; Real-time systems ; Robot kinematics ; Robots ; Task analysis ; telerobotics and teleoperation ; Variability</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.3720-3727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</citedby><cites>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</cites><orcidid>0000-0003-3295-4071 ; 0000-0002-4532-2949 ; 0000-0002-7973-0641 ; 0000-0002-9456-1495 ; 0000-0002-6815-5899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9372859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33869746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Corrective Shared Autonomy for Addressing Task Variability</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><addtitle>IEEE Robot Autom Lett</addtitle><description>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</description><subject>Autonomy</subject><subject>Fasteners</subject><subject>Force</subject><subject>Human-robot collaboration</subject><subject>Kinematics</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Task analysis</subject><subject>telerobotics and teleoperation</subject><subject>Variability</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rFEEQhhtRTFhzFwQZ8JLLrtXf0x6EZfELFgSNXpuamZqk4-x07J4J7L-3w65L9FQF9dRLFQ9jLzmsOAf3dvttvRIg-EqCURrgCTsX0tqltMY8fdSfsYucbwGAa2Gl08_ZmZS1cVaZc_ZuE1Oidgr3VH2_wURdtZ6nOMbdvupjqtZdlyjnMF5XV5h_VT8xBWzCEKb9C_asxyHTxbEu2I-PH642n5fbr5--bNbbZauUm5adsgBGSMKu41Rr0WPba1l6alrkihQqbLRwiKT63hrsjULhpNCaGtXIBXt_yL2bmx11LY1TwsHfpbDDtPcRg_93MoYbfx3vfQ0anLYl4PIYkOLvmfLkdyG3NAw4UpyzF5prsEKXIxfszX_obZzTWN4rFBgDqgZXKDhQbYo5J-pPx3DwD258ceMf3Pijm7Ly-vETp4W_Jgrw6gAEIjqNnbSi1k7-AS3Gkzk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid></search><sort><creationdate>20210401</creationdate><title>Corrective Shared Autonomy for Addressing Task Variability</title><author>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomy</topic><topic>Fasteners</topic><topic>Force</topic><topic>Human-robot collaboration</topic><topic>Kinematics</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Task analysis</topic><topic>telerobotics and teleoperation</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrective Shared Autonomy for Addressing Task Variability</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><addtitle>IEEE Robot Autom Lett</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>3720</spage><epage>3727</epage><pages>3720-3727</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33869746</pmid><doi>10.1109/LRA.2021.3064500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.3720-3727 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2506604809 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomy Fasteners Force Human-robot collaboration Kinematics Real-time systems Robot kinematics Robots Task analysis telerobotics and teleoperation Variability |
title | Corrective Shared Autonomy for Addressing Task Variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrective%20Shared%20Autonomy%20for%20Addressing%20Task%20Variability&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=3720&rft.epage=3727&rft.pages=3720-3727&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3064500&rft_dat=%3Cproquest_RIE%3E2506604809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506604809&rft_id=info:pmid/33869746&rft_ieee_id=9372859&rfr_iscdi=true |