Corrective Shared Autonomy for Addressing Task Variability

Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-04, Vol.6 (2), p.3720-3727
Hauptverfasser: Hagenow, Michael, Senft, Emmanuel, Radwin, Robert, Gleicher, Michael, Mutlu, Bilge, Zinn, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3727
container_issue 2
container_start_page 3720
container_title IEEE robotics and automation letters
container_volume 6
creator Hagenow, Michael
Senft, Emmanuel
Radwin, Robert
Gleicher, Michael
Mutlu, Bilge
Zinn, Michael
description Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.
doi_str_mv 10.1109/LRA.2021.3064500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2506604809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372859</ieee_id><sourcerecordid>2506604809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</originalsourceid><addsrcrecordid>eNpdkU1rFEEQhhtRTFhzFwQZ8JLLrtXf0x6EZfELFgSNXpuamZqk4-x07J4J7L-3w65L9FQF9dRLFQ9jLzmsOAf3dvttvRIg-EqCURrgCTsX0tqltMY8fdSfsYucbwGAa2Gl08_ZmZS1cVaZc_ZuE1Oidgr3VH2_wURdtZ6nOMbdvupjqtZdlyjnMF5XV5h_VT8xBWzCEKb9C_asxyHTxbEu2I-PH642n5fbr5--bNbbZauUm5adsgBGSMKu41Rr0WPba1l6alrkihQqbLRwiKT63hrsjULhpNCaGtXIBXt_yL2bmx11LY1TwsHfpbDDtPcRg_93MoYbfx3vfQ0anLYl4PIYkOLvmfLkdyG3NAw4UpyzF5prsEKXIxfszX_obZzTWN4rFBgDqgZXKDhQbYo5J-pPx3DwD258ceMf3Pijm7Ly-vETp4W_Jgrw6gAEIjqNnbSi1k7-AS3Gkzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506604809</pqid></control><display><type>article</type><title>Corrective Shared Autonomy for Addressing Task Variability</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creatorcontrib><description>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3064500</identifier><identifier>PMID: 33869746</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autonomy ; Fasteners ; Force ; Human-robot collaboration ; Kinematics ; Real-time systems ; Robot kinematics ; Robots ; Task analysis ; telerobotics and teleoperation ; Variability</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.3720-3727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</citedby><cites>FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</cites><orcidid>0000-0003-3295-4071 ; 0000-0002-4532-2949 ; 0000-0002-7973-0641 ; 0000-0002-9456-1495 ; 0000-0002-6815-5899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9372859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33869746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Corrective Shared Autonomy for Addressing Task Variability</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><addtitle>IEEE Robot Autom Lett</addtitle><description>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</description><subject>Autonomy</subject><subject>Fasteners</subject><subject>Force</subject><subject>Human-robot collaboration</subject><subject>Kinematics</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Task analysis</subject><subject>telerobotics and teleoperation</subject><subject>Variability</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rFEEQhhtRTFhzFwQZ8JLLrtXf0x6EZfELFgSNXpuamZqk4-x07J4J7L-3w65L9FQF9dRLFQ9jLzmsOAf3dvttvRIg-EqCURrgCTsX0tqltMY8fdSfsYucbwGAa2Gl08_ZmZS1cVaZc_ZuE1Oidgr3VH2_wURdtZ6nOMbdvupjqtZdlyjnMF5XV5h_VT8xBWzCEKb9C_asxyHTxbEu2I-PH642n5fbr5--bNbbZauUm5adsgBGSMKu41Rr0WPba1l6alrkihQqbLRwiKT63hrsjULhpNCaGtXIBXt_yL2bmx11LY1TwsHfpbDDtPcRg_93MoYbfx3vfQ0anLYl4PIYkOLvmfLkdyG3NAw4UpyzF5prsEKXIxfszX_obZzTWN4rFBgDqgZXKDhQbYo5J-pPx3DwD258ceMf3Pijm7Ly-vETp4W_Jgrw6gAEIjqNnbSi1k7-AS3Gkzk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid></search><sort><creationdate>20210401</creationdate><title>Corrective Shared Autonomy for Addressing Task Variability</title><author>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d4700623eadd1e852facf53d1eebca14e4a4ab529aae4ff76af64a293255eb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomy</topic><topic>Fasteners</topic><topic>Force</topic><topic>Human-robot collaboration</topic><topic>Kinematics</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Task analysis</topic><topic>telerobotics and teleoperation</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrective Shared Autonomy for Addressing Task Variability</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><addtitle>IEEE Robot Autom Lett</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>3720</spage><epage>3727</epage><pages>3720-3727</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this letter, we present corrective shared autonomy , where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33869746</pmid><doi>10.1109/LRA.2021.3064500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.3720-3727
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2506604809
source IEEE Electronic Library (IEL)
subjects Autonomy
Fasteners
Force
Human-robot collaboration
Kinematics
Real-time systems
Robot kinematics
Robots
Task analysis
telerobotics and teleoperation
Variability
title Corrective Shared Autonomy for Addressing Task Variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrective%20Shared%20Autonomy%20for%20Addressing%20Task%20Variability&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=3720&rft.epage=3727&rft.pages=3720-3727&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3064500&rft_dat=%3Cproquest_RIE%3E2506604809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506604809&rft_id=info:pmid/33869746&rft_ieee_id=9372859&rfr_iscdi=true