Level control of a conical tank using the fractional order controller

•A fractional-order internal model controller for the height control of a conical tank nonlinear system is proposed.•A first-order transfer function model of the conical tank system is obtained using the Taylor series expansion, including the Lagrange remainder term.•The controller parameters are op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2020-10, Vol.87, p.106690, Article 106690
Hauptverfasser: Vavilala, Sateesh Kumar, Thirumavalavan, Vinopraba, K, Chandrasekaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106690
container_title Computers & electrical engineering
container_volume 87
creator Vavilala, Sateesh Kumar
Thirumavalavan, Vinopraba
K, Chandrasekaran
description •A fractional-order internal model controller for the height control of a conical tank nonlinear system is proposed.•A first-order transfer function model of the conical tank system is obtained using the Taylor series expansion, including the Lagrange remainder term.•The controller parameters are optimised using particle swarm optimisation algorithm and the whale optimisation algorithms.•Servo and disturbance responses of the controllers obtained using the particle swarm optimisation algorithm, and the whale optimisation algorithms are compared.•Robustness of the proposed controller is verified. This work proposes a fractional-order internal model controller (FOIMC), for the height control of a conical tank nonlinear system. The proposed controller has a fractional filter cascaded with an integer-order PID controller. The FOIMC combines the advantages of IMC such as few tuning parameters, and a stable controller with the advantages of fractional control such as robustness, flexibility in tuning parameters, and a wide stability margin. Linearising the nonlinear system includes the Lagrange remainder term to compensate for the higher-order derivatives. The PSO algorithm and WOA are used to optimise the FOIMC controller parameters. The servo and regulatory responses of the proposed controller are compared with those of state-of-the-art technique showing a 35% improvement in the rise time and 100% improvement in the peak overshoot of the step response. The proposed controller shows better robustness to gain variations and consumes less control energy than the other controller. The proposed controller rejects disturbances faster than the other controller. [Display omitted]
doi_str_mv 10.1016/j.compeleceng.2020.106690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506556321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790620305450</els_id><sourcerecordid>2506556321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a3d471d6c06f2be4476813eb673b2c56ad654d9b2dbba3463e5bb6a40f46f6203</originalsourceid><addsrcrecordid>eNqNkFtLw0AQhRdRsF7-Q8Tn1L1Omkcp9QIFX_R52cukbkyzdTct-O9NiYKPPg1n5pxh5iPkhtE5owzu2rmL2x126LDfzDnlxz5ATU_IjC2quqSVUqdkRqlUZVVTOCcXObd01MAWM7Ja4wG7wsV-SLErYlOYowjOdMVg-o9in0O_KYZ3LJpk3BBiP05i8ph-Qx2mK3LWmC7j9U-9JG8Pq9flU7l-eXxe3q9LJ2Q9lEZ4WTEPjkLDLUpZwYIJtFAJy50C40FJX1vurTVCgkBlLRhJGwkNcCouye20d5fi5x7zoNu4T-NFWXNFQSkQnI2uenK5FHNO2OhdCluTvjSj-khNt_oPNX2kpidqY3Y5ZXF84xAw6ewC9g59SOgG7WP4x5ZvOP57dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506556321</pqid></control><display><type>article</type><title>Level control of a conical tank using the fractional order controller</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vavilala, Sateesh Kumar ; Thirumavalavan, Vinopraba ; K, Chandrasekaran</creator><creatorcontrib>Vavilala, Sateesh Kumar ; Thirumavalavan, Vinopraba ; K, Chandrasekaran</creatorcontrib><description>•A fractional-order internal model controller for the height control of a conical tank nonlinear system is proposed.•A first-order transfer function model of the conical tank system is obtained using the Taylor series expansion, including the Lagrange remainder term.•The controller parameters are optimised using particle swarm optimisation algorithm and the whale optimisation algorithms.•Servo and disturbance responses of the controllers obtained using the particle swarm optimisation algorithm, and the whale optimisation algorithms are compared.•Robustness of the proposed controller is verified. This work proposes a fractional-order internal model controller (FOIMC), for the height control of a conical tank nonlinear system. The proposed controller has a fractional filter cascaded with an integer-order PID controller. The FOIMC combines the advantages of IMC such as few tuning parameters, and a stable controller with the advantages of fractional control such as robustness, flexibility in tuning parameters, and a wide stability margin. Linearising the nonlinear system includes the Lagrange remainder term to compensate for the higher-order derivatives. The PSO algorithm and WOA are used to optimise the FOIMC controller parameters. The servo and regulatory responses of the proposed controller are compared with those of state-of-the-art technique showing a 35% improvement in the rise time and 100% improvement in the peak overshoot of the step response. The proposed controller shows better robustness to gain variations and consumes less control energy than the other controller. The proposed controller rejects disturbances faster than the other controller. [Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2020.106690</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Conical system ; Control stability ; Controllers ; FOIMC ; FOMCON ; Height control ; Lagrange remainder ; Nonlinear systems ; Parameters ; Proportional integral derivative ; PSO ; Robust control ; Robustness ; Servocontrol ; Step response ; Tuning ; WOA</subject><ispartof>Computers &amp; electrical engineering, 2020-10, Vol.87, p.106690, Article 106690</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a3d471d6c06f2be4476813eb673b2c56ad654d9b2dbba3463e5bb6a40f46f6203</citedby><cites>FETCH-LOGICAL-c349t-a3d471d6c06f2be4476813eb673b2c56ad654d9b2dbba3463e5bb6a40f46f6203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2020.106690$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Vavilala, Sateesh Kumar</creatorcontrib><creatorcontrib>Thirumavalavan, Vinopraba</creatorcontrib><creatorcontrib>K, Chandrasekaran</creatorcontrib><title>Level control of a conical tank using the fractional order controller</title><title>Computers &amp; electrical engineering</title><description>•A fractional-order internal model controller for the height control of a conical tank nonlinear system is proposed.•A first-order transfer function model of the conical tank system is obtained using the Taylor series expansion, including the Lagrange remainder term.•The controller parameters are optimised using particle swarm optimisation algorithm and the whale optimisation algorithms.•Servo and disturbance responses of the controllers obtained using the particle swarm optimisation algorithm, and the whale optimisation algorithms are compared.•Robustness of the proposed controller is verified. This work proposes a fractional-order internal model controller (FOIMC), for the height control of a conical tank nonlinear system. The proposed controller has a fractional filter cascaded with an integer-order PID controller. The FOIMC combines the advantages of IMC such as few tuning parameters, and a stable controller with the advantages of fractional control such as robustness, flexibility in tuning parameters, and a wide stability margin. Linearising the nonlinear system includes the Lagrange remainder term to compensate for the higher-order derivatives. The PSO algorithm and WOA are used to optimise the FOIMC controller parameters. The servo and regulatory responses of the proposed controller are compared with those of state-of-the-art technique showing a 35% improvement in the rise time and 100% improvement in the peak overshoot of the step response. The proposed controller shows better robustness to gain variations and consumes less control energy than the other controller. The proposed controller rejects disturbances faster than the other controller. [Display omitted]</description><subject>Algorithms</subject><subject>Conical system</subject><subject>Control stability</subject><subject>Controllers</subject><subject>FOIMC</subject><subject>FOMCON</subject><subject>Height control</subject><subject>Lagrange remainder</subject><subject>Nonlinear systems</subject><subject>Parameters</subject><subject>Proportional integral derivative</subject><subject>PSO</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Servocontrol</subject><subject>Step response</subject><subject>Tuning</subject><subject>WOA</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkFtLw0AQhRdRsF7-Q8Tn1L1Omkcp9QIFX_R52cukbkyzdTct-O9NiYKPPg1n5pxh5iPkhtE5owzu2rmL2x126LDfzDnlxz5ATU_IjC2quqSVUqdkRqlUZVVTOCcXObd01MAWM7Ja4wG7wsV-SLErYlOYowjOdMVg-o9in0O_KYZ3LJpk3BBiP05i8ph-Qx2mK3LWmC7j9U-9JG8Pq9flU7l-eXxe3q9LJ2Q9lEZ4WTEPjkLDLUpZwYIJtFAJy50C40FJX1vurTVCgkBlLRhJGwkNcCouye20d5fi5x7zoNu4T-NFWXNFQSkQnI2uenK5FHNO2OhdCluTvjSj-khNt_oPNX2kpidqY3Y5ZXF84xAw6ewC9g59SOgG7WP4x5ZvOP57dA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Vavilala, Sateesh Kumar</creator><creator>Thirumavalavan, Vinopraba</creator><creator>K, Chandrasekaran</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202010</creationdate><title>Level control of a conical tank using the fractional order controller</title><author>Vavilala, Sateesh Kumar ; Thirumavalavan, Vinopraba ; K, Chandrasekaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a3d471d6c06f2be4476813eb673b2c56ad654d9b2dbba3463e5bb6a40f46f6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Conical system</topic><topic>Control stability</topic><topic>Controllers</topic><topic>FOIMC</topic><topic>FOMCON</topic><topic>Height control</topic><topic>Lagrange remainder</topic><topic>Nonlinear systems</topic><topic>Parameters</topic><topic>Proportional integral derivative</topic><topic>PSO</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Servocontrol</topic><topic>Step response</topic><topic>Tuning</topic><topic>WOA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vavilala, Sateesh Kumar</creatorcontrib><creatorcontrib>Thirumavalavan, Vinopraba</creatorcontrib><creatorcontrib>K, Chandrasekaran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vavilala, Sateesh Kumar</au><au>Thirumavalavan, Vinopraba</au><au>K, Chandrasekaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level control of a conical tank using the fractional order controller</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2020-10</date><risdate>2020</risdate><volume>87</volume><spage>106690</spage><pages>106690-</pages><artnum>106690</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•A fractional-order internal model controller for the height control of a conical tank nonlinear system is proposed.•A first-order transfer function model of the conical tank system is obtained using the Taylor series expansion, including the Lagrange remainder term.•The controller parameters are optimised using particle swarm optimisation algorithm and the whale optimisation algorithms.•Servo and disturbance responses of the controllers obtained using the particle swarm optimisation algorithm, and the whale optimisation algorithms are compared.•Robustness of the proposed controller is verified. This work proposes a fractional-order internal model controller (FOIMC), for the height control of a conical tank nonlinear system. The proposed controller has a fractional filter cascaded with an integer-order PID controller. The FOIMC combines the advantages of IMC such as few tuning parameters, and a stable controller with the advantages of fractional control such as robustness, flexibility in tuning parameters, and a wide stability margin. Linearising the nonlinear system includes the Lagrange remainder term to compensate for the higher-order derivatives. The PSO algorithm and WOA are used to optimise the FOIMC controller parameters. The servo and regulatory responses of the proposed controller are compared with those of state-of-the-art technique showing a 35% improvement in the rise time and 100% improvement in the peak overshoot of the step response. The proposed controller shows better robustness to gain variations and consumes less control energy than the other controller. The proposed controller rejects disturbances faster than the other controller. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2020.106690</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2020-10, Vol.87, p.106690, Article 106690
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2506556321
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Conical system
Control stability
Controllers
FOIMC
FOMCON
Height control
Lagrange remainder
Nonlinear systems
Parameters
Proportional integral derivative
PSO
Robust control
Robustness
Servocontrol
Step response
Tuning
WOA
title Level control of a conical tank using the fractional order controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20control%20of%20a%20conical%20tank%20using%20the%20fractional%20order%20controller&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Vavilala,%20Sateesh%20Kumar&rft.date=2020-10&rft.volume=87&rft.spage=106690&rft.pages=106690-&rft.artnum=106690&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2020.106690&rft_dat=%3Cproquest_cross%3E2506556321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506556321&rft_id=info:pmid/&rft_els_id=S0045790620305450&rfr_iscdi=true