Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications

Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2021-04, Vol.131, p.107101, Article 107101
Hauptverfasser: Jothi Ramalingam, Rajabathar, Arunachalam, Prabhakarn, Amer, Mabrook S., AlOthman, Zeid A., Alanazi, Abdullah G., AL-Anazy, Murefah M., A AL-Lohedan, Hamad, Mohammed Dahan, Wasmiah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107101
container_title Intermetallics
container_volume 131
creator Jothi Ramalingam, Rajabathar
Arunachalam, Prabhakarn
Amer, Mabrook S.
AlOthman, Zeid A.
Alanazi, Abdullah G.
AL-Anazy, Murefah M.
A AL-Lohedan, Hamad
Mohammed Dahan, Wasmiah
description Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application. [Display omitted] •Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..
doi_str_mv 10.1016/j.intermet.2021.107101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506548179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979521000182</els_id><sourcerecordid>2506548179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</originalsourceid><addsrcrecordid>eNqFUV1r3SAYDmODnXX7C0PYzXaRM42JJncbpd0KhULZrsXom3M8JJr5mtLzQ_d_Zpr1uiAoj8_Hq09RfGR0zygTX0975xPECdK-ohXLoMz4q2LHWtmVGRGvix3thCg72TVvi3eIJ0qZpLzZFX-vtXEjEAw-mCNMzuiR4NmnI6BDEgaCbnyASLz2YdYxOZPZ2ltyiHo-ggcSHp0FYmEO6JILnuTVO5yWdCQ2zGDJpP1Be8Bn7uqVlh6ICdOTCpAMIRIYwaQYSqOTHs85iiB4zBdrXng8H8CTCHYxTzER9Hb4fHd__4XoeR7z9CuC74s3gx4RPvzfL4rf11e_Ln-Wt3c_bi6_35aG1zSVdS2GQddcdqCp4VBDa0G2ojJcADcdF1wKWvVG91pDTRteWVmzphtY2w-05RfFp813juHPApjUKSzR50hVNVQ0dctkl1liY5kYECMMao5u0vGsGFVrheqknitUa4VqqzALv21CyG94cBAVGgfegHUx_5Sywb1k8Q9Jva9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506548179</pqid></control><display><type>article</type><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><source>Elsevier ScienceDirect Journals</source><creator>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</creator><creatorcontrib>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</creatorcontrib><description>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application. [Display omitted] •Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2021.107101</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Bismuth ; Bismuth oxide ; Chemical reactions ; Clean energy ; Composite materials ; Deposition ; Electron micrographs ; Energy gap ; Energy technology ; Graphene ; Hydrogen peroxide ; Manganese dioxide ; Manganese oxides ; MnO2 ; Nanocomposites ; Nanoparticles ; Nanotube ; Nanotubes ; ORR ; Oxygen reduction reactions ; Precipitation heat treatment ; Quantum dots ; Silver ; Thermal stability ; TritonX-100</subject><ispartof>Intermetallics, 2021-04, Vol.131, p.107101, Article 107101</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</citedby><cites>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0966979521000182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jothi Ramalingam, Rajabathar</creatorcontrib><creatorcontrib>Arunachalam, Prabhakarn</creatorcontrib><creatorcontrib>Amer, Mabrook S.</creatorcontrib><creatorcontrib>AlOthman, Zeid A.</creatorcontrib><creatorcontrib>Alanazi, Abdullah G.</creatorcontrib><creatorcontrib>AL-Anazy, Murefah M.</creatorcontrib><creatorcontrib>A AL-Lohedan, Hamad</creatorcontrib><creatorcontrib>Mohammed Dahan, Wasmiah</creatorcontrib><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><title>Intermetallics</title><description>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application. [Display omitted] •Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</description><subject>Bismuth</subject><subject>Bismuth oxide</subject><subject>Chemical reactions</subject><subject>Clean energy</subject><subject>Composite materials</subject><subject>Deposition</subject><subject>Electron micrographs</subject><subject>Energy gap</subject><subject>Energy technology</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>MnO2</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotube</subject><subject>Nanotubes</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>Precipitation heat treatment</subject><subject>Quantum dots</subject><subject>Silver</subject><subject>Thermal stability</subject><subject>TritonX-100</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUV1r3SAYDmODnXX7C0PYzXaRM42JJncbpd0KhULZrsXom3M8JJr5mtLzQ_d_Zpr1uiAoj8_Hq09RfGR0zygTX0975xPECdK-ohXLoMz4q2LHWtmVGRGvix3thCg72TVvi3eIJ0qZpLzZFX-vtXEjEAw-mCNMzuiR4NmnI6BDEgaCbnyASLz2YdYxOZPZ2ltyiHo-ggcSHp0FYmEO6JILnuTVO5yWdCQ2zGDJpP1Be8Bn7uqVlh6ICdOTCpAMIRIYwaQYSqOTHs85iiB4zBdrXng8H8CTCHYxTzER9Hb4fHd__4XoeR7z9CuC74s3gx4RPvzfL4rf11e_Ln-Wt3c_bi6_35aG1zSVdS2GQddcdqCp4VBDa0G2ojJcADcdF1wKWvVG91pDTRteWVmzphtY2w-05RfFp813juHPApjUKSzR50hVNVQ0dctkl1liY5kYECMMao5u0vGsGFVrheqknitUa4VqqzALv21CyG94cBAVGgfegHUx_5Sywb1k8Q9Jva9g</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Jothi Ramalingam, Rajabathar</creator><creator>Arunachalam, Prabhakarn</creator><creator>Amer, Mabrook S.</creator><creator>AlOthman, Zeid A.</creator><creator>Alanazi, Abdullah G.</creator><creator>AL-Anazy, Murefah M.</creator><creator>A AL-Lohedan, Hamad</creator><creator>Mohammed Dahan, Wasmiah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202104</creationdate><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><author>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth</topic><topic>Bismuth oxide</topic><topic>Chemical reactions</topic><topic>Clean energy</topic><topic>Composite materials</topic><topic>Deposition</topic><topic>Electron micrographs</topic><topic>Energy gap</topic><topic>Energy technology</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>MnO2</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotube</topic><topic>Nanotubes</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>Precipitation heat treatment</topic><topic>Quantum dots</topic><topic>Silver</topic><topic>Thermal stability</topic><topic>TritonX-100</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jothi Ramalingam, Rajabathar</creatorcontrib><creatorcontrib>Arunachalam, Prabhakarn</creatorcontrib><creatorcontrib>Amer, Mabrook S.</creatorcontrib><creatorcontrib>AlOthman, Zeid A.</creatorcontrib><creatorcontrib>Alanazi, Abdullah G.</creatorcontrib><creatorcontrib>AL-Anazy, Murefah M.</creatorcontrib><creatorcontrib>A AL-Lohedan, Hamad</creatorcontrib><creatorcontrib>Mohammed Dahan, Wasmiah</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jothi Ramalingam, Rajabathar</au><au>Arunachalam, Prabhakarn</au><au>Amer, Mabrook S.</au><au>AlOthman, Zeid A.</au><au>Alanazi, Abdullah G.</au><au>AL-Anazy, Murefah M.</au><au>A AL-Lohedan, Hamad</au><au>Mohammed Dahan, Wasmiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</atitle><jtitle>Intermetallics</jtitle><date>2021-04</date><risdate>2021</risdate><volume>131</volume><spage>107101</spage><pages>107101-</pages><artnum>107101</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application. [Display omitted] •Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2021.107101</doi></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2021-04, Vol.131, p.107101, Article 107101
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2506548179
source Elsevier ScienceDirect Journals
subjects Bismuth
Bismuth oxide
Chemical reactions
Clean energy
Composite materials
Deposition
Electron micrographs
Energy gap
Energy technology
Graphene
Hydrogen peroxide
Manganese dioxide
Manganese oxides
MnO2
Nanocomposites
Nanoparticles
Nanotube
Nanotubes
ORR
Oxygen reduction reactions
Precipitation heat treatment
Quantum dots
Silver
Thermal stability
TritonX-100
title Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20sonochemical%20synthesis%20of%20silver%20nanoparticle%20and%20graphene%20oxide%20deposition%20on%20bismuth%20doped%20manganese%20oxide%20nanotube%20composites%20for%20electro-catalytic%20sensor%20and%20oxygen%20reduction%20reaction%20(ORR)%20applications&rft.jtitle=Intermetallics&rft.au=Jothi%20Ramalingam,%20Rajabathar&rft.date=2021-04&rft.volume=131&rft.spage=107101&rft.pages=107101-&rft.artnum=107101&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2021.107101&rft_dat=%3Cproquest_cross%3E2506548179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506548179&rft_id=info:pmid/&rft_els_id=S0966979521000182&rfr_iscdi=true