Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications
Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation an...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2021-04, Vol.131, p.107101, Article 107101 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107101 |
container_title | Intermetallics |
container_volume | 131 |
creator | Jothi Ramalingam, Rajabathar Arunachalam, Prabhakarn Amer, Mabrook S. AlOthman, Zeid A. Alanazi, Abdullah G. AL-Anazy, Murefah M. A AL-Lohedan, Hamad Mohammed Dahan, Wasmiah |
description | Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application.
[Display omitted]
•Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode.. |
doi_str_mv | 10.1016/j.intermet.2021.107101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506548179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979521000182</els_id><sourcerecordid>2506548179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</originalsourceid><addsrcrecordid>eNqFUV1r3SAYDmODnXX7C0PYzXaRM42JJncbpd0KhULZrsXom3M8JJr5mtLzQ_d_Zpr1uiAoj8_Hq09RfGR0zygTX0975xPECdK-ohXLoMz4q2LHWtmVGRGvix3thCg72TVvi3eIJ0qZpLzZFX-vtXEjEAw-mCNMzuiR4NmnI6BDEgaCbnyASLz2YdYxOZPZ2ltyiHo-ggcSHp0FYmEO6JILnuTVO5yWdCQ2zGDJpP1Be8Bn7uqVlh6ICdOTCpAMIRIYwaQYSqOTHs85iiB4zBdrXng8H8CTCHYxTzER9Hb4fHd__4XoeR7z9CuC74s3gx4RPvzfL4rf11e_Ln-Wt3c_bi6_35aG1zSVdS2GQddcdqCp4VBDa0G2ojJcADcdF1wKWvVG91pDTRteWVmzphtY2w-05RfFp813juHPApjUKSzR50hVNVQ0dctkl1liY5kYECMMao5u0vGsGFVrheqknitUa4VqqzALv21CyG94cBAVGgfegHUx_5Sywb1k8Q9Jva9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506548179</pqid></control><display><type>article</type><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><source>Elsevier ScienceDirect Journals</source><creator>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</creator><creatorcontrib>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</creatorcontrib><description>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application.
[Display omitted]
•Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2021.107101</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Bismuth ; Bismuth oxide ; Chemical reactions ; Clean energy ; Composite materials ; Deposition ; Electron micrographs ; Energy gap ; Energy technology ; Graphene ; Hydrogen peroxide ; Manganese dioxide ; Manganese oxides ; MnO2 ; Nanocomposites ; Nanoparticles ; Nanotube ; Nanotubes ; ORR ; Oxygen reduction reactions ; Precipitation heat treatment ; Quantum dots ; Silver ; Thermal stability ; TritonX-100</subject><ispartof>Intermetallics, 2021-04, Vol.131, p.107101, Article 107101</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</citedby><cites>FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0966979521000182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jothi Ramalingam, Rajabathar</creatorcontrib><creatorcontrib>Arunachalam, Prabhakarn</creatorcontrib><creatorcontrib>Amer, Mabrook S.</creatorcontrib><creatorcontrib>AlOthman, Zeid A.</creatorcontrib><creatorcontrib>Alanazi, Abdullah G.</creatorcontrib><creatorcontrib>AL-Anazy, Murefah M.</creatorcontrib><creatorcontrib>A AL-Lohedan, Hamad</creatorcontrib><creatorcontrib>Mohammed Dahan, Wasmiah</creatorcontrib><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><title>Intermetallics</title><description>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application.
[Display omitted]
•Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</description><subject>Bismuth</subject><subject>Bismuth oxide</subject><subject>Chemical reactions</subject><subject>Clean energy</subject><subject>Composite materials</subject><subject>Deposition</subject><subject>Electron micrographs</subject><subject>Energy gap</subject><subject>Energy technology</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>MnO2</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotube</subject><subject>Nanotubes</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>Precipitation heat treatment</subject><subject>Quantum dots</subject><subject>Silver</subject><subject>Thermal stability</subject><subject>TritonX-100</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUV1r3SAYDmODnXX7C0PYzXaRM42JJncbpd0KhULZrsXom3M8JJr5mtLzQ_d_Zpr1uiAoj8_Hq09RfGR0zygTX0975xPECdK-ohXLoMz4q2LHWtmVGRGvix3thCg72TVvi3eIJ0qZpLzZFX-vtXEjEAw-mCNMzuiR4NmnI6BDEgaCbnyASLz2YdYxOZPZ2ltyiHo-ggcSHp0FYmEO6JILnuTVO5yWdCQ2zGDJpP1Be8Bn7uqVlh6ICdOTCpAMIRIYwaQYSqOTHs85iiB4zBdrXng8H8CTCHYxTzER9Hb4fHd__4XoeR7z9CuC74s3gx4RPvzfL4rf11e_Ln-Wt3c_bi6_35aG1zSVdS2GQddcdqCp4VBDa0G2ojJcADcdF1wKWvVG91pDTRteWVmzphtY2w-05RfFp813juHPApjUKSzR50hVNVQ0dctkl1liY5kYECMMao5u0vGsGFVrheqknitUa4VqqzALv21CyG94cBAVGgfegHUx_5Sywb1k8Q9Jva9g</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Jothi Ramalingam, Rajabathar</creator><creator>Arunachalam, Prabhakarn</creator><creator>Amer, Mabrook S.</creator><creator>AlOthman, Zeid A.</creator><creator>Alanazi, Abdullah G.</creator><creator>AL-Anazy, Murefah M.</creator><creator>A AL-Lohedan, Hamad</creator><creator>Mohammed Dahan, Wasmiah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202104</creationdate><title>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</title><author>Jothi Ramalingam, Rajabathar ; Arunachalam, Prabhakarn ; Amer, Mabrook S. ; AlOthman, Zeid A. ; Alanazi, Abdullah G. ; AL-Anazy, Murefah M. ; A AL-Lohedan, Hamad ; Mohammed Dahan, Wasmiah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-446ffa4379ea0c3e4e8de7862c36e3c93637602bcabaae40532d74159f18bf083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth</topic><topic>Bismuth oxide</topic><topic>Chemical reactions</topic><topic>Clean energy</topic><topic>Composite materials</topic><topic>Deposition</topic><topic>Electron micrographs</topic><topic>Energy gap</topic><topic>Energy technology</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>MnO2</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotube</topic><topic>Nanotubes</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>Precipitation heat treatment</topic><topic>Quantum dots</topic><topic>Silver</topic><topic>Thermal stability</topic><topic>TritonX-100</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jothi Ramalingam, Rajabathar</creatorcontrib><creatorcontrib>Arunachalam, Prabhakarn</creatorcontrib><creatorcontrib>Amer, Mabrook S.</creatorcontrib><creatorcontrib>AlOthman, Zeid A.</creatorcontrib><creatorcontrib>Alanazi, Abdullah G.</creatorcontrib><creatorcontrib>AL-Anazy, Murefah M.</creatorcontrib><creatorcontrib>A AL-Lohedan, Hamad</creatorcontrib><creatorcontrib>Mohammed Dahan, Wasmiah</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jothi Ramalingam, Rajabathar</au><au>Arunachalam, Prabhakarn</au><au>Amer, Mabrook S.</au><au>AlOthman, Zeid A.</au><au>Alanazi, Abdullah G.</au><au>AL-Anazy, Murefah M.</au><au>A AL-Lohedan, Hamad</au><au>Mohammed Dahan, Wasmiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications</atitle><jtitle>Intermetallics</jtitle><date>2021-04</date><risdate>2021</risdate><volume>131</volume><spage>107101</spage><pages>107101-</pages><artnum>107101</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application.
[Display omitted]
•Silver nanoparticle/GO deposition on Bi-MnOx nanotube prepared by ultrasonication.•Ag QDs and graphene sheets inserted into the nanotube of Bi-MnOx.•Ag-BiMnOx/GO shows enhanced capacitance activity of 2.61 m.•Ag-BiMnOx/GO shows higher electrochemical surface area of 65 m2.•Ag-BiMnOx/GO shows 4e− oxygen reduction process similar like Pt/C electrode..</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2021.107101</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-9795 |
ispartof | Intermetallics, 2021-04, Vol.131, p.107101, Article 107101 |
issn | 0966-9795 1879-0216 |
language | eng |
recordid | cdi_proquest_journals_2506548179 |
source | Elsevier ScienceDirect Journals |
subjects | Bismuth Bismuth oxide Chemical reactions Clean energy Composite materials Deposition Electron micrographs Energy gap Energy technology Graphene Hydrogen peroxide Manganese dioxide Manganese oxides MnO2 Nanocomposites Nanoparticles Nanotube Nanotubes ORR Oxygen reduction reactions Precipitation heat treatment Quantum dots Silver Thermal stability TritonX-100 |
title | Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20sonochemical%20synthesis%20of%20silver%20nanoparticle%20and%20graphene%20oxide%20deposition%20on%20bismuth%20doped%20manganese%20oxide%20nanotube%20composites%20for%20electro-catalytic%20sensor%20and%20oxygen%20reduction%20reaction%20(ORR)%20applications&rft.jtitle=Intermetallics&rft.au=Jothi%20Ramalingam,%20Rajabathar&rft.date=2021-04&rft.volume=131&rft.spage=107101&rft.pages=107101-&rft.artnum=107101&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2021.107101&rft_dat=%3Cproquest_cross%3E2506548179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506548179&rft_id=info:pmid/&rft_els_id=S0966979521000182&rfr_iscdi=true |