Nonradiative subdiffraction near-field patterns using metagratings

We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-03, Vol.118 (13)
Hauptverfasser: Rabinovich, Oshri, Epstein, Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 118
creator Rabinovich, Oshri
Epstein, Ariel
description We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of polarizable particles (meta-atoms). As the model reliably predicts coupling to all scattered Floquet–Bloch modes, both propagating and evanescent, desired reactive near-field profiles with deep subwavelength features can be generated. This approach forms an appealing alternative to previously proposed near-field plates based on metasurfaces, where abstract homogenization introduces uncertainties regarding utilization of highly evanescent spectrum, and meta-atom realization incurs full-wave optimization. In contrast, the outlined MG-based methodology, verified via full-wave simulations, directly yields fabrication-ready printed-circuit-board configurations, enabling versatile control of reactive near fields with no interfering radiative components, with potential uses in sensing, selective microwave heating, and wireless power transfer.
doi_str_mv 10.1063/5.0043484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506514633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506514633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f45b8e155e77dbf99f3d725866526feab06dccf31cf7042af0ae25cec7dab143</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCq7Vg99gwZPC1ryze9TiC4peeg_ZPJaUNrsm2YLf3i0tehA8DQO_-Q8zAFwjOEeQk3s2h5ASWtMTUCAoREUQqk9BASEkFW8YOgcXKa2nlmFCCvD43oeojFfZ72yZxtZ456LS2fehDFbFynm7MeWgcrYxpHJMPnTl1mbVxWkodOkSnDm1SfbqWGdg9fy0WrxWy4-Xt8XDstIEi1w5ytraIsasEKZ1TeOIEZjVnDPMnVUt5EZrR5B2AlKsHFQWM221MKpFlMzAzSF2iP3naFOW636MYdooMYOcIcoJmdTtQenYpxStk0P0WxW_JIJy_yHJ5PFDk7072KR9VvuLf_Cuj79QDsb9h_8mfwNBxnVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506514633</pqid></control><display><type>article</type><title>Nonradiative subdiffraction near-field patterns using metagratings</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Rabinovich, Oshri ; Epstein, Ariel</creator><creatorcontrib>Rabinovich, Oshri ; Epstein, Ariel</creatorcontrib><description>We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of polarizable particles (meta-atoms). As the model reliably predicts coupling to all scattered Floquet–Bloch modes, both propagating and evanescent, desired reactive near-field profiles with deep subwavelength features can be generated. This approach forms an appealing alternative to previously proposed near-field plates based on metasurfaces, where abstract homogenization introduces uncertainties regarding utilization of highly evanescent spectrum, and meta-atom realization incurs full-wave optimization. In contrast, the outlined MG-based methodology, verified via full-wave simulations, directly yields fabrication-ready printed-circuit-board configurations, enabling versatile control of reactive near fields with no interfering radiative components, with potential uses in sensing, selective microwave heating, and wireless power transfer.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0043484</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuit boards ; Depth profiling ; Near fields ; Plane waves ; Propagation modes ; Wireless power transmission</subject><ispartof>Applied physics letters, 2021-03, Vol.118 (13)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f45b8e155e77dbf99f3d725866526feab06dccf31cf7042af0ae25cec7dab143</citedby><cites>FETCH-LOGICAL-c327t-f45b8e155e77dbf99f3d725866526feab06dccf31cf7042af0ae25cec7dab143</cites><orcidid>0000-0003-0231-9640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0043484$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Rabinovich, Oshri</creatorcontrib><creatorcontrib>Epstein, Ariel</creatorcontrib><title>Nonradiative subdiffraction near-field patterns using metagratings</title><title>Applied physics letters</title><description>We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of polarizable particles (meta-atoms). As the model reliably predicts coupling to all scattered Floquet–Bloch modes, both propagating and evanescent, desired reactive near-field profiles with deep subwavelength features can be generated. This approach forms an appealing alternative to previously proposed near-field plates based on metasurfaces, where abstract homogenization introduces uncertainties regarding utilization of highly evanescent spectrum, and meta-atom realization incurs full-wave optimization. In contrast, the outlined MG-based methodology, verified via full-wave simulations, directly yields fabrication-ready printed-circuit-board configurations, enabling versatile control of reactive near fields with no interfering radiative components, with potential uses in sensing, selective microwave heating, and wireless power transfer.</description><subject>Applied physics</subject><subject>Circuit boards</subject><subject>Depth profiling</subject><subject>Near fields</subject><subject>Plane waves</subject><subject>Propagation modes</subject><subject>Wireless power transmission</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCq7Vg99gwZPC1ryze9TiC4peeg_ZPJaUNrsm2YLf3i0tehA8DQO_-Q8zAFwjOEeQk3s2h5ASWtMTUCAoREUQqk9BASEkFW8YOgcXKa2nlmFCCvD43oeojFfZ72yZxtZ456LS2fehDFbFynm7MeWgcrYxpHJMPnTl1mbVxWkodOkSnDm1SfbqWGdg9fy0WrxWy4-Xt8XDstIEi1w5ytraIsasEKZ1TeOIEZjVnDPMnVUt5EZrR5B2AlKsHFQWM221MKpFlMzAzSF2iP3naFOW636MYdooMYOcIcoJmdTtQenYpxStk0P0WxW_JIJy_yHJ5PFDk7072KR9VvuLf_Cuj79QDsb9h_8mfwNBxnVQ</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Rabinovich, Oshri</creator><creator>Epstein, Ariel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0231-9640</orcidid></search><sort><creationdate>20210329</creationdate><title>Nonradiative subdiffraction near-field patterns using metagratings</title><author>Rabinovich, Oshri ; Epstein, Ariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f45b8e155e77dbf99f3d725866526feab06dccf31cf7042af0ae25cec7dab143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Circuit boards</topic><topic>Depth profiling</topic><topic>Near fields</topic><topic>Plane waves</topic><topic>Propagation modes</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabinovich, Oshri</creatorcontrib><creatorcontrib>Epstein, Ariel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabinovich, Oshri</au><au>Epstein, Ariel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonradiative subdiffraction near-field patterns using metagratings</atitle><jtitle>Applied physics letters</jtitle><date>2021-03-29</date><risdate>2021</risdate><volume>118</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of polarizable particles (meta-atoms). As the model reliably predicts coupling to all scattered Floquet–Bloch modes, both propagating and evanescent, desired reactive near-field profiles with deep subwavelength features can be generated. This approach forms an appealing alternative to previously proposed near-field plates based on metasurfaces, where abstract homogenization introduces uncertainties regarding utilization of highly evanescent spectrum, and meta-atom realization incurs full-wave optimization. In contrast, the outlined MG-based methodology, verified via full-wave simulations, directly yields fabrication-ready printed-circuit-board configurations, enabling versatile control of reactive near fields with no interfering radiative components, with potential uses in sensing, selective microwave heating, and wireless power transfer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0043484</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0231-9640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-03, Vol.118 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2506514633
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Circuit boards
Depth profiling
Near fields
Plane waves
Propagation modes
Wireless power transmission
title Nonradiative subdiffraction near-field patterns using metagratings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonradiative%20subdiffraction%20near-field%20patterns%20using%20metagratings&rft.jtitle=Applied%20physics%20letters&rft.au=Rabinovich,%20Oshri&rft.date=2021-03-29&rft.volume=118&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0043484&rft_dat=%3Cproquest_cross%3E2506514633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506514633&rft_id=info:pmid/&rfr_iscdi=true