Study of the crystal structure of SnS thin films by atomic layer deposition
Tin monosulfide, SnS, absorbs visible light and holds promise for thin-film photovoltaics. However, the optoelectronic properties of this material vary among the different structural phases, and control over the phase of vapor deposited SnS thin films is not well understood. In order to study the ph...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-03, Vol.11 (3), p.035144-035144-6, Article 035144 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 035144-6 |
---|---|
container_issue | 3 |
container_start_page | 035144 |
container_title | AIP advances |
container_volume | 11 |
creator | Zhao, Xizhu Davis, Luke M. Lou, Xiabing Kim, Sang Bok Uličná, Soňa Jayaraman, Ashwin Yang, Chuanxi Schelhas, Laura T. Gordon, Roy |
description | Tin monosulfide, SnS, absorbs visible light and holds promise for thin-film photovoltaics. However, the optoelectronic properties of this material vary among the different structural phases, and control over the phase of vapor deposited SnS thin films is not well understood. In order to study the phases and crystallographic orientations of SnS films, films with thicknesses of 90 nm–750 nm were prepared by atomic layer deposition (ALD) at temperatures between 80 °C and 200 °C on amorphous silicon dioxide (a-SiO2) and single-crystal sodium chloride (NaCl). We show that the crystal structures and orientations of the ALD-SnS thin films vary with deposition temperature, film thickness, and substrate. We confirm the presence of metastable cubic π-SnS in co-existence with the thermodynamically stable orthorhombic α-SnS and find that the π phase is more prevalent at lower deposition temperatures. The films grown on a-SiO2 are textured, the degree of texturing increases with lower temperature or higher thickness, and the deposited phase is also thickness dependent. Upon annealing, which is known to promote SnS grain growth, all films revert to orthorhombic α-SnS. The films grown on the NaCl(100) substrate exhibit a much higher degree of texturing and show different preferred orientations dependent on the phase: π-(400) and α-(111) or α-(040). In addition, we demonstrate a proof-of-concept device made from the highly oriented SnS grown on NaCl. |
doi_str_mv | 10.1063/5.0032782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2506514622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d5cc8e172eec4cedac46a733e1f62a58</doaj_id><sourcerecordid>2506514622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-478d6a0ab7b660dd4882eb46d29931194598d064580719ae0656cbbfb14cc4dc3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEElXpgW8QwQmqLf4f54hWUCoqcVg4W854Qr3KxovtFOXb4zTVgoSE8MXWzO89z-hV1UtKrihR_J28IoSzRrMn1RmjUm84Y-rpH-_n1UVKe1KOaCnR4qz6vMuTm-vQ1_kOa4hzynaoU44T5Cni0tiNu9L0Y9374ZDqbq5tDgcP9WBnjLXDY0g--zC-qJ71dkh48XifV98-fvi6_bS5_XJ9s31_uwEhZd6IRjtlie2aTininNCaYSeUY23LKW2FbLUjSkhNGtpaJEoq6Lq-owJAOODn1c3q64Ldm2P0BxtnE6w3D4UQvxsbs4cBjZMAGmnDEEEAOgtC2YZzpL1iVuri9Wr1Cil7k8BnhDsI44iQDW0aTrUo0OsVOsbwY8KUzT5McSw7GibLeFQoxgr1ZqUghpQi9qfRKDFLPkaax3wKe7myP7ELffkWR8ATX_JRXHEu6BLVQuv_p7c-2yWNbZjGXKRvV-my2kP9pLsP8fdE5uj6f8F_r_ALcnS82Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506514622</pqid></control><display><type>article</type><title>Study of the crystal structure of SnS thin films by atomic layer deposition</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Xizhu ; Davis, Luke M. ; Lou, Xiabing ; Kim, Sang Bok ; Uličná, Soňa ; Jayaraman, Ashwin ; Yang, Chuanxi ; Schelhas, Laura T. ; Gordon, Roy</creator><creatorcontrib>Zhao, Xizhu ; Davis, Luke M. ; Lou, Xiabing ; Kim, Sang Bok ; Uličná, Soňa ; Jayaraman, Ashwin ; Yang, Chuanxi ; Schelhas, Laura T. ; Gordon, Roy</creatorcontrib><description>Tin monosulfide, SnS, absorbs visible light and holds promise for thin-film photovoltaics. However, the optoelectronic properties of this material vary among the different structural phases, and control over the phase of vapor deposited SnS thin films is not well understood. In order to study the phases and crystallographic orientations of SnS films, films with thicknesses of 90 nm–750 nm were prepared by atomic layer deposition (ALD) at temperatures between 80 °C and 200 °C on amorphous silicon dioxide (a-SiO2) and single-crystal sodium chloride (NaCl). We show that the crystal structures and orientations of the ALD-SnS thin films vary with deposition temperature, film thickness, and substrate. We confirm the presence of metastable cubic π-SnS in co-existence with the thermodynamically stable orthorhombic α-SnS and find that the π phase is more prevalent at lower deposition temperatures. The films grown on a-SiO2 are textured, the degree of texturing increases with lower temperature or higher thickness, and the deposited phase is also thickness dependent. Upon annealing, which is known to promote SnS grain growth, all films revert to orthorhombic α-SnS. The films grown on the NaCl(100) substrate exhibit a much higher degree of texturing and show different preferred orientations dependent on the phase: π-(400) and α-(111) or α-(040). In addition, we demonstrate a proof-of-concept device made from the highly oriented SnS grown on NaCl.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0032782</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Amorphous silicon ; Atomic layer epitaxy ; Crystal structure ; Crystallography ; Film thickness ; Grain growth ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Optoelectronics ; Photovoltaic cells ; Physical Sciences ; Physics ; Physics, Applied ; Science & Technology ; Science & Technology - Other Topics ; Silicon dioxide ; Single crystals ; Sodium chloride ; Substrates ; Technology ; Texturing ; Thin films ; Vapor deposition</subject><ispartof>AIP advances, 2021-03, Vol.11 (3), p.035144-035144-6, Article 035144</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000636334100002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-478d6a0ab7b660dd4882eb46d29931194598d064580719ae0656cbbfb14cc4dc3</citedby><cites>FETCH-LOGICAL-c455t-478d6a0ab7b660dd4882eb46d29931194598d064580719ae0656cbbfb14cc4dc3</cites><orcidid>0000-0002-8491-0831 ; 0000-0003-2299-1864 ; 0000-0003-4402-3207 ; 0000-0002-2868-7823 ; 0000-0001-5287-7179 ; 0000-0002-1047-9866 ; 0000-0003-0179-4810 ; 0000-0002-4086-7296 ; 0000-0001-5980-268X ; 0000000284910831 ; 0000000344023207 ; 0000000152877179 ; 0000000228687823 ; 0000000301794810 ; 0000000210479866 ; 0000000322991864 ; 0000000240867296 ; 000000015980268X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,2103,2115,27928,27929</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1773184$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xizhu</creatorcontrib><creatorcontrib>Davis, Luke M.</creatorcontrib><creatorcontrib>Lou, Xiabing</creatorcontrib><creatorcontrib>Kim, Sang Bok</creatorcontrib><creatorcontrib>Uličná, Soňa</creatorcontrib><creatorcontrib>Jayaraman, Ashwin</creatorcontrib><creatorcontrib>Yang, Chuanxi</creatorcontrib><creatorcontrib>Schelhas, Laura T.</creatorcontrib><creatorcontrib>Gordon, Roy</creatorcontrib><title>Study of the crystal structure of SnS thin films by atomic layer deposition</title><title>AIP advances</title><addtitle>AIP ADV</addtitle><description>Tin monosulfide, SnS, absorbs visible light and holds promise for thin-film photovoltaics. However, the optoelectronic properties of this material vary among the different structural phases, and control over the phase of vapor deposited SnS thin films is not well understood. In order to study the phases and crystallographic orientations of SnS films, films with thicknesses of 90 nm–750 nm were prepared by atomic layer deposition (ALD) at temperatures between 80 °C and 200 °C on amorphous silicon dioxide (a-SiO2) and single-crystal sodium chloride (NaCl). We show that the crystal structures and orientations of the ALD-SnS thin films vary with deposition temperature, film thickness, and substrate. We confirm the presence of metastable cubic π-SnS in co-existence with the thermodynamically stable orthorhombic α-SnS and find that the π phase is more prevalent at lower deposition temperatures. The films grown on a-SiO2 are textured, the degree of texturing increases with lower temperature or higher thickness, and the deposited phase is also thickness dependent. Upon annealing, which is known to promote SnS grain growth, all films revert to orthorhombic α-SnS. The films grown on the NaCl(100) substrate exhibit a much higher degree of texturing and show different preferred orientations dependent on the phase: π-(400) and α-(111) or α-(040). In addition, we demonstrate a proof-of-concept device made from the highly oriented SnS grown on NaCl.</description><subject>Amorphous silicon</subject><subject>Atomic layer epitaxy</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Film thickness</subject><subject>Grain growth</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Optoelectronics</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Sodium chloride</subject><subject>Substrates</subject><subject>Technology</subject><subject>Texturing</subject><subject>Thin films</subject><subject>Vapor deposition</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEElXpgW8QwQmqLf4f54hWUCoqcVg4W854Qr3KxovtFOXb4zTVgoSE8MXWzO89z-hV1UtKrihR_J28IoSzRrMn1RmjUm84Y-rpH-_n1UVKe1KOaCnR4qz6vMuTm-vQ1_kOa4hzynaoU44T5Cni0tiNu9L0Y9374ZDqbq5tDgcP9WBnjLXDY0g--zC-qJ71dkh48XifV98-fvi6_bS5_XJ9s31_uwEhZd6IRjtlie2aTininNCaYSeUY23LKW2FbLUjSkhNGtpaJEoq6Lq-owJAOODn1c3q64Ldm2P0BxtnE6w3D4UQvxsbs4cBjZMAGmnDEEEAOgtC2YZzpL1iVuri9Wr1Cil7k8BnhDsI44iQDW0aTrUo0OsVOsbwY8KUzT5McSw7GibLeFQoxgr1ZqUghpQi9qfRKDFLPkaax3wKe7myP7ELffkWR8ATX_JRXHEu6BLVQuv_p7c-2yWNbZjGXKRvV-my2kP9pLsP8fdE5uj6f8F_r_ALcnS82Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhao, Xizhu</creator><creator>Davis, Luke M.</creator><creator>Lou, Xiabing</creator><creator>Kim, Sang Bok</creator><creator>Uličná, Soňa</creator><creator>Jayaraman, Ashwin</creator><creator>Yang, Chuanxi</creator><creator>Schelhas, Laura T.</creator><creator>Gordon, Roy</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8491-0831</orcidid><orcidid>https://orcid.org/0000-0003-2299-1864</orcidid><orcidid>https://orcid.org/0000-0003-4402-3207</orcidid><orcidid>https://orcid.org/0000-0002-2868-7823</orcidid><orcidid>https://orcid.org/0000-0001-5287-7179</orcidid><orcidid>https://orcid.org/0000-0002-1047-9866</orcidid><orcidid>https://orcid.org/0000-0003-0179-4810</orcidid><orcidid>https://orcid.org/0000-0002-4086-7296</orcidid><orcidid>https://orcid.org/0000-0001-5980-268X</orcidid><orcidid>https://orcid.org/0000000284910831</orcidid><orcidid>https://orcid.org/0000000344023207</orcidid><orcidid>https://orcid.org/0000000152877179</orcidid><orcidid>https://orcid.org/0000000228687823</orcidid><orcidid>https://orcid.org/0000000301794810</orcidid><orcidid>https://orcid.org/0000000210479866</orcidid><orcidid>https://orcid.org/0000000322991864</orcidid><orcidid>https://orcid.org/0000000240867296</orcidid><orcidid>https://orcid.org/000000015980268X</orcidid></search><sort><creationdate>20210301</creationdate><title>Study of the crystal structure of SnS thin films by atomic layer deposition</title><author>Zhao, Xizhu ; Davis, Luke M. ; Lou, Xiabing ; Kim, Sang Bok ; Uličná, Soňa ; Jayaraman, Ashwin ; Yang, Chuanxi ; Schelhas, Laura T. ; Gordon, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-478d6a0ab7b660dd4882eb46d29931194598d064580719ae0656cbbfb14cc4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous silicon</topic><topic>Atomic layer epitaxy</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Film thickness</topic><topic>Grain growth</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Optoelectronics</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Sodium chloride</topic><topic>Substrates</topic><topic>Technology</topic><topic>Texturing</topic><topic>Thin films</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xizhu</creatorcontrib><creatorcontrib>Davis, Luke M.</creatorcontrib><creatorcontrib>Lou, Xiabing</creatorcontrib><creatorcontrib>Kim, Sang Bok</creatorcontrib><creatorcontrib>Uličná, Soňa</creatorcontrib><creatorcontrib>Jayaraman, Ashwin</creatorcontrib><creatorcontrib>Yang, Chuanxi</creatorcontrib><creatorcontrib>Schelhas, Laura T.</creatorcontrib><creatorcontrib>Gordon, Roy</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xizhu</au><au>Davis, Luke M.</au><au>Lou, Xiabing</au><au>Kim, Sang Bok</au><au>Uličná, Soňa</au><au>Jayaraman, Ashwin</au><au>Yang, Chuanxi</au><au>Schelhas, Laura T.</au><au>Gordon, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the crystal structure of SnS thin films by atomic layer deposition</atitle><jtitle>AIP advances</jtitle><stitle>AIP ADV</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>035144</spage><epage>035144-6</epage><pages>035144-035144-6</pages><artnum>035144</artnum><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Tin monosulfide, SnS, absorbs visible light and holds promise for thin-film photovoltaics. However, the optoelectronic properties of this material vary among the different structural phases, and control over the phase of vapor deposited SnS thin films is not well understood. In order to study the phases and crystallographic orientations of SnS films, films with thicknesses of 90 nm–750 nm were prepared by atomic layer deposition (ALD) at temperatures between 80 °C and 200 °C on amorphous silicon dioxide (a-SiO2) and single-crystal sodium chloride (NaCl). We show that the crystal structures and orientations of the ALD-SnS thin films vary with deposition temperature, film thickness, and substrate. We confirm the presence of metastable cubic π-SnS in co-existence with the thermodynamically stable orthorhombic α-SnS and find that the π phase is more prevalent at lower deposition temperatures. The films grown on a-SiO2 are textured, the degree of texturing increases with lower temperature or higher thickness, and the deposited phase is also thickness dependent. Upon annealing, which is known to promote SnS grain growth, all films revert to orthorhombic α-SnS. The films grown on the NaCl(100) substrate exhibit a much higher degree of texturing and show different preferred orientations dependent on the phase: π-(400) and α-(111) or α-(040). In addition, we demonstrate a proof-of-concept device made from the highly oriented SnS grown on NaCl.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0032782</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8491-0831</orcidid><orcidid>https://orcid.org/0000-0003-2299-1864</orcidid><orcidid>https://orcid.org/0000-0003-4402-3207</orcidid><orcidid>https://orcid.org/0000-0002-2868-7823</orcidid><orcidid>https://orcid.org/0000-0001-5287-7179</orcidid><orcidid>https://orcid.org/0000-0002-1047-9866</orcidid><orcidid>https://orcid.org/0000-0003-0179-4810</orcidid><orcidid>https://orcid.org/0000-0002-4086-7296</orcidid><orcidid>https://orcid.org/0000-0001-5980-268X</orcidid><orcidid>https://orcid.org/0000000284910831</orcidid><orcidid>https://orcid.org/0000000344023207</orcidid><orcidid>https://orcid.org/0000000152877179</orcidid><orcidid>https://orcid.org/0000000228687823</orcidid><orcidid>https://orcid.org/0000000301794810</orcidid><orcidid>https://orcid.org/0000000210479866</orcidid><orcidid>https://orcid.org/0000000322991864</orcidid><orcidid>https://orcid.org/0000000240867296</orcidid><orcidid>https://orcid.org/000000015980268X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2021-03, Vol.11 (3), p.035144-035144-6, Article 035144 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2506514622 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amorphous silicon Atomic layer epitaxy Crystal structure Crystallography Film thickness Grain growth Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Optoelectronics Photovoltaic cells Physical Sciences Physics Physics, Applied Science & Technology Science & Technology - Other Topics Silicon dioxide Single crystals Sodium chloride Substrates Technology Texturing Thin films Vapor deposition |
title | Study of the crystal structure of SnS thin films by atomic layer deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20crystal%20structure%20of%20SnS%20thin%20films%20by%20atomic%20layer%20deposition&rft.jtitle=AIP%20advances&rft.au=Zhao,%20Xizhu&rft.date=2021-03-01&rft.volume=11&rft.issue=3&rft.spage=035144&rft.epage=035144-6&rft.pages=035144-035144-6&rft.artnum=035144&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0032782&rft_dat=%3Cproquest_osti_%3E2506514622%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506514622&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d5cc8e172eec4cedac46a733e1f62a58&rfr_iscdi=true |