Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries
Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2021-03, Vol.45 (12), p.5695-5703 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5703 |
---|---|
container_issue | 12 |
container_start_page | 5695 |
container_title | New journal of chemistry |
container_volume | 45 |
creator | Wang, Hongqiang Lai, Anjie Huang, Dequan Chu, Youqi Hu, Sijiang Pan, Qichang Liu, Zhiheng Zheng, Fenghua Huang, Youguo Li, Qingyu |
description | Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment. |
doi_str_mv | 10.1039/d0nj06081j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2506284238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506284238</sourcerecordid><originalsourceid>FETCH-LOGICAL-j249t-83279a73552082661410453b22dc83caf8ef56fb41c9afc9130430e1f71192583</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMoWKsbnyDgOvbe_E2ylMGqUKgLBV2VzDTpZGgndZK69h18Q5_Egq6-AwfOR8g1wi2CsLM1DD1oMNifkAkKbZnlGk-PjFIyUFKfk4ucewDESuOEvL3_fH3PaZvYOu3jsKGN79xnTCNNgS7i3D8v5aymgxtSm3b7lGPxmYaj7-KmY6Mrnm5j6eJhx2IaaONK8WP0-ZKcBbfN_up_p-R1fv9SP7LF8uGpvluwnktbmBG8sq4SSnEwXGuUCFKJhvN1a0TrgvFB6dBIbK0LrUUBUoDHUCFaroyYkpu_7n5MHwefy6pPh3E4Xq64As2N5MKIX5zjUjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506284238</pqid></control><display><type>article</type><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</creator><creatorcontrib>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</creatorcontrib><description>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj06081j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Attenuation ; Carbon ; Cathodes ; Diffusion rate ; Discharge ; Doping ; Electric vehicles ; Electrode materials ; Electron clouds ; High temperature ; Ion currents ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Rechargeable batteries ; Solid phases</subject><ispartof>New journal of chemistry, 2021-03, Vol.45 (12), p.5695-5703</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Lai, Anjie</creatorcontrib><creatorcontrib>Huang, Dequan</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Liu, Zhiheng</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><title>New journal of chemistry</title><description>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</description><subject>Attenuation</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Diffusion rate</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electron clouds</subject><subject>High temperature</subject><subject>Ion currents</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Rechargeable batteries</subject><subject>Solid phases</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotjc1KAzEURoMoWKsbnyDgOvbe_E2ylMGqUKgLBV2VzDTpZGgndZK69h18Q5_Egq6-AwfOR8g1wi2CsLM1DD1oMNifkAkKbZnlGk-PjFIyUFKfk4ucewDESuOEvL3_fH3PaZvYOu3jsKGN79xnTCNNgS7i3D8v5aymgxtSm3b7lGPxmYaj7-KmY6Mrnm5j6eJhx2IaaONK8WP0-ZKcBbfN_up_p-R1fv9SP7LF8uGpvluwnktbmBG8sq4SSnEwXGuUCFKJhvN1a0TrgvFB6dBIbK0LrUUBUoDHUCFaroyYkpu_7n5MHwefy6pPh3E4Xq64As2N5MKIX5zjUjw</recordid><startdate>20210328</startdate><enddate>20210328</enddate><creator>Wang, Hongqiang</creator><creator>Lai, Anjie</creator><creator>Huang, Dequan</creator><creator>Chu, Youqi</creator><creator>Hu, Sijiang</creator><creator>Pan, Qichang</creator><creator>Liu, Zhiheng</creator><creator>Zheng, Fenghua</creator><creator>Huang, Youguo</creator><creator>Li, Qingyu</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20210328</creationdate><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><author>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j249t-83279a73552082661410453b22dc83caf8ef56fb41c9afc9130430e1f71192583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Diffusion rate</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electron clouds</topic><topic>High temperature</topic><topic>Ion currents</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Rechargeable batteries</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Lai, Anjie</creatorcontrib><creatorcontrib>Huang, Dequan</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Liu, Zhiheng</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongqiang</au><au>Lai, Anjie</au><au>Huang, Dequan</au><au>Chu, Youqi</au><au>Hu, Sijiang</au><au>Pan, Qichang</au><au>Liu, Zhiheng</au><au>Zheng, Fenghua</au><au>Huang, Youguo</au><au>Li, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2021-03-28</date><risdate>2021</risdate><volume>45</volume><issue>12</issue><spage>5695</spage><epage>5703</epage><pages>5695-5703</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nj06081j</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2021-03, Vol.45 (12), p.5695-5703 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_proquest_journals_2506284238 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Attenuation Carbon Cathodes Diffusion rate Discharge Doping Electric vehicles Electrode materials Electron clouds High temperature Ion currents Ion diffusion Lithium Lithium-ion batteries Nanocomposites Rechargeable batteries Solid phases |
title | Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Y%E2%80%93F%20co-doping%20behavior%20of%20LiFePO4/C%20nanocomposites%20for%20high-rate%20lithium-ion%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Wang,%20Hongqiang&rft.date=2021-03-28&rft.volume=45&rft.issue=12&rft.spage=5695&rft.epage=5703&rft.pages=5695-5703&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj06081j&rft_dat=%3Cproquest%3E2506284238%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506284238&rft_id=info:pmid/&rfr_iscdi=true |