Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries

Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2021-03, Vol.45 (12), p.5695-5703
Hauptverfasser: Wang, Hongqiang, Lai, Anjie, Huang, Dequan, Chu, Youqi, Hu, Sijiang, Pan, Qichang, Liu, Zhiheng, Zheng, Fenghua, Huang, Youguo, Li, Qingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5703
container_issue 12
container_start_page 5695
container_title New journal of chemistry
container_volume 45
creator Wang, Hongqiang
Lai, Anjie
Huang, Dequan
Chu, Youqi
Hu, Sijiang
Pan, Qichang
Liu, Zhiheng
Zheng, Fenghua
Huang, Youguo
Li, Qingyu
description Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.
doi_str_mv 10.1039/d0nj06081j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2506284238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506284238</sourcerecordid><originalsourceid>FETCH-LOGICAL-j249t-83279a73552082661410453b22dc83caf8ef56fb41c9afc9130430e1f71192583</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMoWKsbnyDgOvbe_E2ylMGqUKgLBV2VzDTpZGgndZK69h18Q5_Egq6-AwfOR8g1wi2CsLM1DD1oMNifkAkKbZnlGk-PjFIyUFKfk4ucewDESuOEvL3_fH3PaZvYOu3jsKGN79xnTCNNgS7i3D8v5aymgxtSm3b7lGPxmYaj7-KmY6Mrnm5j6eJhx2IaaONK8WP0-ZKcBbfN_up_p-R1fv9SP7LF8uGpvluwnktbmBG8sq4SSnEwXGuUCFKJhvN1a0TrgvFB6dBIbK0LrUUBUoDHUCFaroyYkpu_7n5MHwefy6pPh3E4Xq64As2N5MKIX5zjUjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506284238</pqid></control><display><type>article</type><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</creator><creatorcontrib>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</creatorcontrib><description>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj06081j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Attenuation ; Carbon ; Cathodes ; Diffusion rate ; Discharge ; Doping ; Electric vehicles ; Electrode materials ; Electron clouds ; High temperature ; Ion currents ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Rechargeable batteries ; Solid phases</subject><ispartof>New journal of chemistry, 2021-03, Vol.45 (12), p.5695-5703</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Lai, Anjie</creatorcontrib><creatorcontrib>Huang, Dequan</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Liu, Zhiheng</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><title>New journal of chemistry</title><description>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</description><subject>Attenuation</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Diffusion rate</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electron clouds</subject><subject>High temperature</subject><subject>Ion currents</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Rechargeable batteries</subject><subject>Solid phases</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotjc1KAzEURoMoWKsbnyDgOvbe_E2ylMGqUKgLBV2VzDTpZGgndZK69h18Q5_Egq6-AwfOR8g1wi2CsLM1DD1oMNifkAkKbZnlGk-PjFIyUFKfk4ucewDESuOEvL3_fH3PaZvYOu3jsKGN79xnTCNNgS7i3D8v5aymgxtSm3b7lGPxmYaj7-KmY6Mrnm5j6eJhx2IaaONK8WP0-ZKcBbfN_up_p-R1fv9SP7LF8uGpvluwnktbmBG8sq4SSnEwXGuUCFKJhvN1a0TrgvFB6dBIbK0LrUUBUoDHUCFaroyYkpu_7n5MHwefy6pPh3E4Xq64As2N5MKIX5zjUjw</recordid><startdate>20210328</startdate><enddate>20210328</enddate><creator>Wang, Hongqiang</creator><creator>Lai, Anjie</creator><creator>Huang, Dequan</creator><creator>Chu, Youqi</creator><creator>Hu, Sijiang</creator><creator>Pan, Qichang</creator><creator>Liu, Zhiheng</creator><creator>Zheng, Fenghua</creator><creator>Huang, Youguo</creator><creator>Li, Qingyu</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20210328</creationdate><title>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</title><author>Wang, Hongqiang ; Lai, Anjie ; Huang, Dequan ; Chu, Youqi ; Hu, Sijiang ; Pan, Qichang ; Liu, Zhiheng ; Zheng, Fenghua ; Huang, Youguo ; Li, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j249t-83279a73552082661410453b22dc83caf8ef56fb41c9afc9130430e1f71192583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Diffusion rate</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electron clouds</topic><topic>High temperature</topic><topic>Ion currents</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Rechargeable batteries</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Lai, Anjie</creatorcontrib><creatorcontrib>Huang, Dequan</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Liu, Zhiheng</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongqiang</au><au>Lai, Anjie</au><au>Huang, Dequan</au><au>Chu, Youqi</au><au>Hu, Sijiang</au><au>Pan, Qichang</au><au>Liu, Zhiheng</au><au>Zheng, Fenghua</au><au>Huang, Youguo</au><au>Li, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2021-03-28</date><risdate>2021</risdate><volume>45</volume><issue>12</issue><spage>5695</spage><epage>5703</epage><pages>5695-5703</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Lithium iron phosphate (LFP) has become one of the current mainstream cathode materials due to its high safety and low price. Most modification methods applied (e.g. ion doping, carbon coating and particle size restriction) are used to overcome its poor electronic and ionic conductivity. Here, the Y–F co-doped LFP/carbon (LFP/C) precursor was successfully synthesized using a high temperature solid phase method. The electronic conductivity of the material is enhanced by doping with F which induces the rearrangement of the PO43+ electron cloud, while the doping with Y introduces Li+ vacancies, thereby reducing the space resistance of Li ion diffusion, resulting in an overall enhancement of the ionic conductivity of the material. In addition, XRD refinement results show that Y and F doping leads to a weakening of the Li–O bond while also widening the lithium ion diffusion tunnel, thereby increasing the lithium ion diffusion rate. Therefore, this work has produced LFP/C-YF-2, which exhibits an ultra-high discharge specific capacity of 135.8 mAh g−1 at 10C, and a discharge specific capacity of 148.6 mA h g−1 without attenuation after 700 cycles at 5C. It is hoped that this high-capacity and high-rate cycling stability material will become a promising cathode material for applications in high-power electric vehicles and other equipment.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nj06081j</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2021-03, Vol.45 (12), p.5695-5703
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2506284238
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Attenuation
Carbon
Cathodes
Diffusion rate
Discharge
Doping
Electric vehicles
Electrode materials
Electron clouds
High temperature
Ion currents
Ion diffusion
Lithium
Lithium-ion batteries
Nanocomposites
Rechargeable batteries
Solid phases
title Y–F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Y%E2%80%93F%20co-doping%20behavior%20of%20LiFePO4/C%20nanocomposites%20for%20high-rate%20lithium-ion%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Wang,%20Hongqiang&rft.date=2021-03-28&rft.volume=45&rft.issue=12&rft.spage=5695&rft.epage=5703&rft.pages=5695-5703&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj06081j&rft_dat=%3Cproquest%3E2506284238%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506284238&rft_id=info:pmid/&rfr_iscdi=true