Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells

Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2021-04, Vol.54 (4), p.1815-1839
Hauptverfasser: Wang, Yongliang, Ju, Yang, Zhang, Haomin, Gong, Shichao, Song, Jinxin, Li, Yang, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1839
container_issue 4
container_start_page 1815
container_title Rock mechanics and rock engineering
container_volume 54
creator Wang, Yongliang
Ju, Yang
Zhang, Haomin
Gong, Shichao
Song, Jinxin
Li, Yang
Chen, Jun
description Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.
doi_str_mv 10.1007/s00603-021-02364-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506115652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506115652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</originalsourceid><addsrcrecordid>eNp9UcuOEzEQnEUgERZ-gJMlzgN-zCvHkE3ISotAyvK4jTx2e-PVrD24PYvCiX_gD_kSPBmkFRcOVre6q6u7XFn2ktHXjNL6DVJaUZFTztITVZE3j7IFK0SRF6X4-jhb0JqLnFeCP82eId5Smpp1szg7W2k5RHsPZGudjUA2PdyBi79__rqwqAI8lMjKyf6IFonxgcQDkH0MgEj2B6n9d7IxBlREIp0m2yBVHAOQSxdhyq135C0c5L31Y0BiHbk-BID8wiZqTF3Zk_djHy1GeQNkd9TBm5nEuhuy9gmk4ZR_luE4xY8Q0iHyRL3uR0yLyH6QCv45YULuFTgZrEfiDdn5YH94F9PCL9D3-Dx7YmSP8OJvPM8-bTfX611-9eHd5Xp1lSvBljGvpTZSGpCUN51eLivQAKZrQBcdVYwLyatCloKr0gjeFLWCyhS6W5ZFx5muxXn2auYdgv82Asb2Nn1F0o0tL2nFWFmVPKH4jFLBIwYw7RDsXVLcMtpOVrez1W2yuj1Z3TZpSMxDOEx6ITxQ_2fqD7BUtQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506115652</pqid></control><display><type>article</type><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</creator><creatorcontrib>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</creatorcontrib><description>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02364-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Civil Engineering ; Clusters ; Computer applications ; Coupling ; Crack propagation ; Discrete element method ; Earth and Environmental Science ; Earth Sciences ; Finite element method ; Fracture mechanics ; Geophysics/Geodesy ; Horizontal wells ; Hydraulic fracturing ; Mathematical models ; Mechanical properties ; Morphology ; Numerical models ; Optimization ; Original Paper ; Propagation ; Shadows ; Shear stress ; Stress distribution ; Stress propagation ; Three dimensional models</subject><ispartof>Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1815-1839</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</citedby><cites>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</cites><orcidid>0000-0003-4297-4455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02364-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02364-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Zhang, Haomin</creatorcontrib><creatorcontrib>Gong, Shichao</creatorcontrib><creatorcontrib>Song, Jinxin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</description><subject>Civil Engineering</subject><subject>Clusters</subject><subject>Computer applications</subject><subject>Coupling</subject><subject>Crack propagation</subject><subject>Discrete element method</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Geophysics/Geodesy</subject><subject>Horizontal wells</subject><subject>Hydraulic fracturing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Propagation</subject><subject>Shadows</subject><subject>Shear stress</subject><subject>Stress distribution</subject><subject>Stress propagation</subject><subject>Three dimensional models</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcuOEzEQnEUgERZ-gJMlzgN-zCvHkE3ISotAyvK4jTx2e-PVrD24PYvCiX_gD_kSPBmkFRcOVre6q6u7XFn2ktHXjNL6DVJaUZFTztITVZE3j7IFK0SRF6X4-jhb0JqLnFeCP82eId5Smpp1szg7W2k5RHsPZGudjUA2PdyBi79__rqwqAI8lMjKyf6IFonxgcQDkH0MgEj2B6n9d7IxBlREIp0m2yBVHAOQSxdhyq135C0c5L31Y0BiHbk-BID8wiZqTF3Zk_djHy1GeQNkd9TBm5nEuhuy9gmk4ZR_luE4xY8Q0iHyRL3uR0yLyH6QCv45YULuFTgZrEfiDdn5YH94F9PCL9D3-Dx7YmSP8OJvPM8-bTfX611-9eHd5Xp1lSvBljGvpTZSGpCUN51eLivQAKZrQBcdVYwLyatCloKr0gjeFLWCyhS6W5ZFx5muxXn2auYdgv82Asb2Nn1F0o0tL2nFWFmVPKH4jFLBIwYw7RDsXVLcMtpOVrez1W2yuj1Z3TZpSMxDOEx6ITxQ_2fqD7BUtQc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Yongliang</creator><creator>Ju, Yang</creator><creator>Zhang, Haomin</creator><creator>Gong, Shichao</creator><creator>Song, Jinxin</creator><creator>Li, Yang</creator><creator>Chen, Jun</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4297-4455</orcidid></search><sort><creationdate>20210401</creationdate><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><author>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Clusters</topic><topic>Computer applications</topic><topic>Coupling</topic><topic>Crack propagation</topic><topic>Discrete element method</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Geophysics/Geodesy</topic><topic>Horizontal wells</topic><topic>Hydraulic fracturing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Propagation</topic><topic>Shadows</topic><topic>Shear stress</topic><topic>Stress distribution</topic><topic>Stress propagation</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Zhang, Haomin</creatorcontrib><creatorcontrib>Gong, Shichao</creatorcontrib><creatorcontrib>Song, Jinxin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yongliang</au><au>Ju, Yang</au><au>Zhang, Haomin</au><au>Gong, Shichao</au><au>Song, Jinxin</au><au>Li, Yang</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>4</issue><spage>1815</spage><epage>1839</epage><pages>1815-1839</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02364-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4297-4455</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1815-1839
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_journals_2506115652
source SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Clusters
Computer applications
Coupling
Crack propagation
Discrete element method
Earth and Environmental Science
Earth Sciences
Finite element method
Fracture mechanics
Geophysics/Geodesy
Horizontal wells
Hydraulic fracturing
Mathematical models
Mechanical properties
Morphology
Numerical models
Optimization
Original Paper
Propagation
Shadows
Shear stress
Stress distribution
Stress propagation
Three dimensional models
title Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Finite%20Element%E2%80%93Discrete%20Element%20Analysis%20for%20the%20Stress%20Shadow%20Effects%20and%20Fracture%20Interaction%20Behaviours%20in%20Three-Dimensional%20Multistage%20Hydrofracturing%20Considering%20Varying%20Perforation%20Cluster%20Spaces%20and%20Fracturing%20Scenarios%20of%20Horizontal%20Wells&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Wang,%20Yongliang&rft.date=2021-04-01&rft.volume=54&rft.issue=4&rft.spage=1815&rft.epage=1839&rft.pages=1815-1839&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02364-8&rft_dat=%3Cproquest_cross%3E2506115652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506115652&rft_id=info:pmid/&rfr_iscdi=true