Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells
Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupl...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-04, Vol.54 (4), p.1815-1839 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1839 |
---|---|
container_issue | 4 |
container_start_page | 1815 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Wang, Yongliang Ju, Yang Zhang, Haomin Gong, Shichao Song, Jinxin Li, Yang Chen, Jun |
description | Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing. |
doi_str_mv | 10.1007/s00603-021-02364-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506115652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506115652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</originalsourceid><addsrcrecordid>eNp9UcuOEzEQnEUgERZ-gJMlzgN-zCvHkE3ISotAyvK4jTx2e-PVrD24PYvCiX_gD_kSPBmkFRcOVre6q6u7XFn2ktHXjNL6DVJaUZFTztITVZE3j7IFK0SRF6X4-jhb0JqLnFeCP82eId5Smpp1szg7W2k5RHsPZGudjUA2PdyBi79__rqwqAI8lMjKyf6IFonxgcQDkH0MgEj2B6n9d7IxBlREIp0m2yBVHAOQSxdhyq135C0c5L31Y0BiHbk-BID8wiZqTF3Zk_djHy1GeQNkd9TBm5nEuhuy9gmk4ZR_luE4xY8Q0iHyRL3uR0yLyH6QCv45YULuFTgZrEfiDdn5YH94F9PCL9D3-Dx7YmSP8OJvPM8-bTfX611-9eHd5Xp1lSvBljGvpTZSGpCUN51eLivQAKZrQBcdVYwLyatCloKr0gjeFLWCyhS6W5ZFx5muxXn2auYdgv82Asb2Nn1F0o0tL2nFWFmVPKH4jFLBIwYw7RDsXVLcMtpOVrez1W2yuj1Z3TZpSMxDOEx6ITxQ_2fqD7BUtQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506115652</pqid></control><display><type>article</type><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</creator><creatorcontrib>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</creatorcontrib><description>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02364-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Civil Engineering ; Clusters ; Computer applications ; Coupling ; Crack propagation ; Discrete element method ; Earth and Environmental Science ; Earth Sciences ; Finite element method ; Fracture mechanics ; Geophysics/Geodesy ; Horizontal wells ; Hydraulic fracturing ; Mathematical models ; Mechanical properties ; Morphology ; Numerical models ; Optimization ; Original Paper ; Propagation ; Shadows ; Shear stress ; Stress distribution ; Stress propagation ; Three dimensional models</subject><ispartof>Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1815-1839</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</citedby><cites>FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</cites><orcidid>0000-0003-4297-4455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02364-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02364-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Zhang, Haomin</creatorcontrib><creatorcontrib>Gong, Shichao</creatorcontrib><creatorcontrib>Song, Jinxin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</description><subject>Civil Engineering</subject><subject>Clusters</subject><subject>Computer applications</subject><subject>Coupling</subject><subject>Crack propagation</subject><subject>Discrete element method</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Geophysics/Geodesy</subject><subject>Horizontal wells</subject><subject>Hydraulic fracturing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Propagation</subject><subject>Shadows</subject><subject>Shear stress</subject><subject>Stress distribution</subject><subject>Stress propagation</subject><subject>Three dimensional models</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcuOEzEQnEUgERZ-gJMlzgN-zCvHkE3ISotAyvK4jTx2e-PVrD24PYvCiX_gD_kSPBmkFRcOVre6q6u7XFn2ktHXjNL6DVJaUZFTztITVZE3j7IFK0SRF6X4-jhb0JqLnFeCP82eId5Smpp1szg7W2k5RHsPZGudjUA2PdyBi79__rqwqAI8lMjKyf6IFonxgcQDkH0MgEj2B6n9d7IxBlREIp0m2yBVHAOQSxdhyq135C0c5L31Y0BiHbk-BID8wiZqTF3Zk_djHy1GeQNkd9TBm5nEuhuy9gmk4ZR_luE4xY8Q0iHyRL3uR0yLyH6QCv45YULuFTgZrEfiDdn5YH94F9PCL9D3-Dx7YmSP8OJvPM8-bTfX611-9eHd5Xp1lSvBljGvpTZSGpCUN51eLivQAKZrQBcdVYwLyatCloKr0gjeFLWCyhS6W5ZFx5muxXn2auYdgv82Asb2Nn1F0o0tL2nFWFmVPKH4jFLBIwYw7RDsXVLcMtpOVrez1W2yuj1Z3TZpSMxDOEx6ITxQ_2fqD7BUtQc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Yongliang</creator><creator>Ju, Yang</creator><creator>Zhang, Haomin</creator><creator>Gong, Shichao</creator><creator>Song, Jinxin</creator><creator>Li, Yang</creator><creator>Chen, Jun</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4297-4455</orcidid></search><sort><creationdate>20210401</creationdate><title>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</title><author>Wang, Yongliang ; Ju, Yang ; Zhang, Haomin ; Gong, Shichao ; Song, Jinxin ; Li, Yang ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7adfaafea028bd996edeefb8ed4b0c123a264a532c5f32847ce6f4db954b21d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Clusters</topic><topic>Computer applications</topic><topic>Coupling</topic><topic>Crack propagation</topic><topic>Discrete element method</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Geophysics/Geodesy</topic><topic>Horizontal wells</topic><topic>Hydraulic fracturing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Propagation</topic><topic>Shadows</topic><topic>Shear stress</topic><topic>Stress distribution</topic><topic>Stress propagation</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yongliang</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Zhang, Haomin</creatorcontrib><creatorcontrib>Gong, Shichao</creatorcontrib><creatorcontrib>Song, Jinxin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yongliang</au><au>Ju, Yang</au><au>Zhang, Haomin</au><au>Gong, Shichao</au><au>Song, Jinxin</au><au>Li, Yang</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>4</issue><spage>1815</spage><epage>1839</epage><pages>1815-1839</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02364-8</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4297-4455</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1815-1839 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2506115652 |
source | SpringerLink Journals - AutoHoldings |
subjects | Civil Engineering Clusters Computer applications Coupling Crack propagation Discrete element method Earth and Environmental Science Earth Sciences Finite element method Fracture mechanics Geophysics/Geodesy Horizontal wells Hydraulic fracturing Mathematical models Mechanical properties Morphology Numerical models Optimization Original Paper Propagation Shadows Shear stress Stress distribution Stress propagation Three dimensional models |
title | Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Finite%20Element%E2%80%93Discrete%20Element%20Analysis%20for%20the%20Stress%20Shadow%20Effects%20and%20Fracture%20Interaction%20Behaviours%20in%20Three-Dimensional%20Multistage%20Hydrofracturing%20Considering%20Varying%20Perforation%20Cluster%20Spaces%20and%20Fracturing%20Scenarios%20of%20Horizontal%20Wells&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Wang,%20Yongliang&rft.date=2021-04-01&rft.volume=54&rft.issue=4&rft.spage=1815&rft.epage=1839&rft.pages=1815-1839&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02364-8&rft_dat=%3Cproquest_cross%3E2506115652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506115652&rft_id=info:pmid/&rfr_iscdi=true |