A multi-fidelity Bayesian optimization approach based on the expected further improvement
Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been successfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed. Extending the standard BO approaches to multi-fidelity opt...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2021-04, Vol.63 (4), p.1709-1719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1719 |
---|---|
container_issue | 4 |
container_start_page | 1709 |
container_title | Structural and multidisciplinary optimization |
container_volume | 63 |
creator | Shu, Leshi Jiang, Ping Wang, Yan |
description | Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been successfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed. Extending the standard BO approaches to multi-fidelity optimization can utilize the information of low-fidelity models to further reduce the optimization cost. In this work, a multi-fidelity Bayesian optimization approach is proposed, in which hierarchical Kriging is used for constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of HF and LF samples in multi-fidelity optimization based on a new concept of expected further improvement. A novel acquisition function is proposed to determine both the location and fidelity level of the next sample simultaneously, with the consideration of balance between the value of information provided by the new sample and the associated sampling cost. The proposed approach is compared with some state-of-the-art methods for multi-fidelity global optimization with numerical examples and an engineering case. The results show that the proposed approach can obtain global optimal solutions with reduced computational costs. |
doi_str_mv | 10.1007/s00158-020-02772-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505799870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505799870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-142356a605e2278c9b0214131f8deb1801670bfd8831cbf12de0e4739c4a52fe3</originalsourceid><addsrcrecordid>eNp9UMlKBDEQDaLgOPoDngKeWyvpJenjOLjBgBcFPYV0d8XJML2YpMXx64226M1DUQtvKR4hpwzOGYC48AAslwlwiCUET7I9MmMFyxOWSbn_O4unQ3Lk_QYAJGTljDwvaDtug02MbXBrw45e6h16qzvaD8G29kMH23dUD4Prdb2mlfbY0HgJa6T4PmAd4m5GF3dHbRthb9hiF47JgdFbjyc_fU4er68elrfJ6v7mbrlYJXXKyhB_4mle6AJy5FzIuqyAs4ylzMgGKyaBFQIq00iZsroyjDcImIm0rDOdc4PpnJxNutH5dUQf1KYfXRctFc8hF2UpBUQUn1C16713aNTgbKvdTjFQXxGqKUIVI1TfEaosktKJ5CO4e0H3J_0P6xMv7nRn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505799870</pqid></control><display><type>article</type><title>A multi-fidelity Bayesian optimization approach based on the expected further improvement</title><source>Springer Nature - Complete Springer Journals</source><creator>Shu, Leshi ; Jiang, Ping ; Wang, Yan</creator><creatorcontrib>Shu, Leshi ; Jiang, Ping ; Wang, Yan</creatorcontrib><description>Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been successfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed. Extending the standard BO approaches to multi-fidelity optimization can utilize the information of low-fidelity models to further reduce the optimization cost. In this work, a multi-fidelity Bayesian optimization approach is proposed, in which hierarchical Kriging is used for constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of HF and LF samples in multi-fidelity optimization based on a new concept of expected further improvement. A novel acquisition function is proposed to determine both the location and fidelity level of the next sample simultaneously, with the consideration of balance between the value of information provided by the new sample and the associated sampling cost. The proposed approach is compared with some state-of-the-art methods for multi-fidelity global optimization with numerical examples and an engineering case. The results show that the proposed approach can obtain global optimal solutions with reduced computational costs.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02772-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Bayesian analysis ; Computational Mathematics and Numerical Analysis ; Computing costs ; Design optimization ; Engineering ; Engineering Design ; Global optimization ; Metamodels ; Research Paper ; Sampling ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2021-04, Vol.63 (4), p.1709-1719</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-142356a605e2278c9b0214131f8deb1801670bfd8831cbf12de0e4739c4a52fe3</citedby><cites>FETCH-LOGICAL-c319t-142356a605e2278c9b0214131f8deb1801670bfd8831cbf12de0e4739c4a52fe3</cites><orcidid>0000-0001-9324-4191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02772-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02772-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Shu, Leshi</creatorcontrib><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><title>A multi-fidelity Bayesian optimization approach based on the expected further improvement</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been successfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed. Extending the standard BO approaches to multi-fidelity optimization can utilize the information of low-fidelity models to further reduce the optimization cost. In this work, a multi-fidelity Bayesian optimization approach is proposed, in which hierarchical Kriging is used for constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of HF and LF samples in multi-fidelity optimization based on a new concept of expected further improvement. A novel acquisition function is proposed to determine both the location and fidelity level of the next sample simultaneously, with the consideration of balance between the value of information provided by the new sample and the associated sampling cost. The proposed approach is compared with some state-of-the-art methods for multi-fidelity global optimization with numerical examples and an engineering case. The results show that the proposed approach can obtain global optimal solutions with reduced computational costs.</description><subject>Accuracy</subject><subject>Bayesian analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing costs</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Global optimization</subject><subject>Metamodels</subject><subject>Research Paper</subject><subject>Sampling</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMlKBDEQDaLgOPoDngKeWyvpJenjOLjBgBcFPYV0d8XJML2YpMXx64226M1DUQtvKR4hpwzOGYC48AAslwlwiCUET7I9MmMFyxOWSbn_O4unQ3Lk_QYAJGTljDwvaDtug02MbXBrw45e6h16qzvaD8G29kMH23dUD4Prdb2mlfbY0HgJa6T4PmAd4m5GF3dHbRthb9hiF47JgdFbjyc_fU4er68elrfJ6v7mbrlYJXXKyhB_4mle6AJy5FzIuqyAs4ylzMgGKyaBFQIq00iZsroyjDcImIm0rDOdc4PpnJxNutH5dUQf1KYfXRctFc8hF2UpBUQUn1C16713aNTgbKvdTjFQXxGqKUIVI1TfEaosktKJ5CO4e0H3J_0P6xMv7nRn</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Shu, Leshi</creator><creator>Jiang, Ping</creator><creator>Wang, Yan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9324-4191</orcidid></search><sort><creationdate>20210401</creationdate><title>A multi-fidelity Bayesian optimization approach based on the expected further improvement</title><author>Shu, Leshi ; Jiang, Ping ; Wang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-142356a605e2278c9b0214131f8deb1801670bfd8831cbf12de0e4739c4a52fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Bayesian analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing costs</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Global optimization</topic><topic>Metamodels</topic><topic>Research Paper</topic><topic>Sampling</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Leshi</creatorcontrib><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Leshi</au><au>Jiang, Ping</au><au>Wang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-fidelity Bayesian optimization approach based on the expected further improvement</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>63</volume><issue>4</issue><spage>1709</spage><epage>1719</epage><pages>1709-1719</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been successfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed. Extending the standard BO approaches to multi-fidelity optimization can utilize the information of low-fidelity models to further reduce the optimization cost. In this work, a multi-fidelity Bayesian optimization approach is proposed, in which hierarchical Kriging is used for constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of HF and LF samples in multi-fidelity optimization based on a new concept of expected further improvement. A novel acquisition function is proposed to determine both the location and fidelity level of the next sample simultaneously, with the consideration of balance between the value of information provided by the new sample and the associated sampling cost. The proposed approach is compared with some state-of-the-art methods for multi-fidelity global optimization with numerical examples and an engineering case. The results show that the proposed approach can obtain global optimal solutions with reduced computational costs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02772-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9324-4191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2021-04, Vol.63 (4), p.1709-1719 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2505799870 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Bayesian analysis Computational Mathematics and Numerical Analysis Computing costs Design optimization Engineering Engineering Design Global optimization Metamodels Research Paper Sampling Theoretical and Applied Mechanics |
title | A multi-fidelity Bayesian optimization approach based on the expected further improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-fidelity%20Bayesian%20optimization%20approach%20based%20on%20the%20expected%20further%20improvement&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Shu,%20Leshi&rft.date=2021-04-01&rft.volume=63&rft.issue=4&rft.spage=1709&rft.epage=1719&rft.pages=1709-1719&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02772-4&rft_dat=%3Cproquest_cross%3E2505799870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505799870&rft_id=info:pmid/&rfr_iscdi=true |