A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows

Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2021-03, Vol.35 (4), p.1273-1289
Hauptverfasser: Rosin, T. R., Romano, M., Keedwell, E., Kapelan, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 4
container_start_page 1273
container_title Water resources management
container_volume 35
creator Rosin, T. R.
Romano, M.
Keedwell, E.
Kapelan, Z.
description Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a novel bi-model committee evolutionary artificial neural network (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h ahead using inputs of past/current CSO level data, radar rainfall data and forecast forecasted rainfall data. The model is composed of two evolutionary artificial neural network (EANN) models. The two models are trained and optimised for wet and dry weather conditions respectively and their results combined into a single response using a non-linear weighted averaging approach. An evolutionary strategy algorithm is employed to automatically select the optimal artificial neural network (ANN) structure and parameter set, allowing the network to be tailored specifically for different CSO locations and forecast horizons without significant human input. The CEANN model was tested and evaluated on real level data from 4 CSOs located in Northern England and the results compared to three other ANN models. The results demonstrate that the CEANN model is superior in terms of accuracy for almost all forecast horizons considered. It is able to accurately forecast the dry weather and wet weather level, predicting the timing and magnitude of upcoming spill events, thus providing information that is of clear use to a wastewater utility.
doi_str_mv 10.1007/s11269-021-02780-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505799390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505799390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-36b73d9f7ffbe15c5ff4d33b68bbc68d24b9a5966a9ce8481edb8187b8a1e65d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7YcfxaVlV5SBUg8dhacTKGlDQudtqKfj0uQWLHYjSbe-5oDkLnlFxSQuRVpDQXOiM5TSMVyXYHaES5ZBkVnByiEdE5yQpZ0GN0EuOCkIRpMkKvEzz1y2XT9wB4tvHtum98V4YvfA_rULZp9VsfPrDzAffvgB8D1E21D2Hv9qxtOqjxE2wh4IcNBNf6bTxFR65sI5z97jF6uZ49T2-z-cPN3XQyzyomWJ8xYSWrtZPOWaC84s4VNWNWKGsroeq8sLrkWohSV6AKRaG2iippVUlB8JqN0cXQuwr-cw2xNwu_Dl06aXJOuNSaaZJS-ZCqgo8xgDOr0CzTk4YSs_dnBn8m-TM__swuQWyAYgp3bxD-qv-hvgELMHSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505799390</pqid></control><display><type>article</type><title>A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows</title><source>SpringerNature Journals</source><creator>Rosin, T. R. ; Romano, M. ; Keedwell, E. ; Kapelan, Z.</creator><creatorcontrib>Rosin, T. R. ; Romano, M. ; Keedwell, E. ; Kapelan, Z.</creatorcontrib><description>Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a novel bi-model committee evolutionary artificial neural network (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h ahead using inputs of past/current CSO level data, radar rainfall data and forecast forecasted rainfall data. The model is composed of two evolutionary artificial neural network (EANN) models. The two models are trained and optimised for wet and dry weather conditions respectively and their results combined into a single response using a non-linear weighted averaging approach. An evolutionary strategy algorithm is employed to automatically select the optimal artificial neural network (ANN) structure and parameter set, allowing the network to be tailored specifically for different CSO locations and forecast horizons without significant human input. The CEANN model was tested and evaluated on real level data from 4 CSOs located in Northern England and the results compared to three other ANN models. The results demonstrate that the CEANN model is superior in terms of accuracy for almost all forecast horizons considered. It is able to accurately forecast the dry weather and wet weather level, predicting the timing and magnitude of upcoming spill events, thus providing information that is of clear use to a wastewater utility.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-021-02780-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Atmospheric Sciences ; Civil Engineering ; Combined sewer overflows ; Data ; Earth and Environmental Science ; Earth Sciences ; Environment ; Evolution ; Evolutionary algorithms ; Flooding ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrologic data ; Hydrology/Water Resources ; Mitigation ; Model accuracy ; Model testing ; Neural networks ; Pollution sources ; Radar ; Rain ; Rainfall ; Wastewater ; Water levels ; Water pollution ; Weather ; Weather forecasting</subject><ispartof>Water resources management, 2021-03, Vol.35 (4), p.1273-1289</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-36b73d9f7ffbe15c5ff4d33b68bbc68d24b9a5966a9ce8481edb8187b8a1e65d3</citedby><cites>FETCH-LOGICAL-c363t-36b73d9f7ffbe15c5ff4d33b68bbc68d24b9a5966a9ce8481edb8187b8a1e65d3</cites><orcidid>0000-0002-8956-3058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-021-02780-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-021-02780-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Rosin, T. R.</creatorcontrib><creatorcontrib>Romano, M.</creatorcontrib><creatorcontrib>Keedwell, E.</creatorcontrib><creatorcontrib>Kapelan, Z.</creatorcontrib><title>A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a novel bi-model committee evolutionary artificial neural network (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h ahead using inputs of past/current CSO level data, radar rainfall data and forecast forecasted rainfall data. The model is composed of two evolutionary artificial neural network (EANN) models. The two models are trained and optimised for wet and dry weather conditions respectively and their results combined into a single response using a non-linear weighted averaging approach. An evolutionary strategy algorithm is employed to automatically select the optimal artificial neural network (ANN) structure and parameter set, allowing the network to be tailored specifically for different CSO locations and forecast horizons without significant human input. The CEANN model was tested and evaluated on real level data from 4 CSOs located in Northern England and the results compared to three other ANN models. The results demonstrate that the CEANN model is superior in terms of accuracy for almost all forecast horizons considered. It is able to accurately forecast the dry weather and wet weather level, predicting the timing and magnitude of upcoming spill events, thus providing information that is of clear use to a wastewater utility.</description><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Combined sewer overflows</subject><subject>Data</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Evolution</subject><subject>Evolutionary algorithms</subject><subject>Flooding</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology/Water Resources</subject><subject>Mitigation</subject><subject>Model accuracy</subject><subject>Model testing</subject><subject>Neural networks</subject><subject>Pollution sources</subject><subject>Radar</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Wastewater</subject><subject>Water levels</subject><subject>Water pollution</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7YcfxaVlV5SBUg8dhacTKGlDQudtqKfj0uQWLHYjSbe-5oDkLnlFxSQuRVpDQXOiM5TSMVyXYHaES5ZBkVnByiEdE5yQpZ0GN0EuOCkIRpMkKvEzz1y2XT9wB4tvHtum98V4YvfA_rULZp9VsfPrDzAffvgB8D1E21D2Hv9qxtOqjxE2wh4IcNBNf6bTxFR65sI5z97jF6uZ49T2-z-cPN3XQyzyomWJ8xYSWrtZPOWaC84s4VNWNWKGsroeq8sLrkWohSV6AKRaG2iippVUlB8JqN0cXQuwr-cw2xNwu_Dl06aXJOuNSaaZJS-ZCqgo8xgDOr0CzTk4YSs_dnBn8m-TM__swuQWyAYgp3bxD-qv-hvgELMHSg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Rosin, T. R.</creator><creator>Romano, M.</creator><creator>Keedwell, E.</creator><creator>Kapelan, Z.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8956-3058</orcidid></search><sort><creationdate>20210301</creationdate><title>A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows</title><author>Rosin, T. R. ; Romano, M. ; Keedwell, E. ; Kapelan, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-36b73d9f7ffbe15c5ff4d33b68bbc68d24b9a5966a9ce8481edb8187b8a1e65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Combined sewer overflows</topic><topic>Data</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Evolution</topic><topic>Evolutionary algorithms</topic><topic>Flooding</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology/Water Resources</topic><topic>Mitigation</topic><topic>Model accuracy</topic><topic>Model testing</topic><topic>Neural networks</topic><topic>Pollution sources</topic><topic>Radar</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Wastewater</topic><topic>Water levels</topic><topic>Water pollution</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosin, T. R.</creatorcontrib><creatorcontrib>Romano, M.</creatorcontrib><creatorcontrib>Keedwell, E.</creatorcontrib><creatorcontrib>Kapelan, Z.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosin, T. R.</au><au>Romano, M.</au><au>Keedwell, E.</au><au>Kapelan, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>1273</spage><epage>1289</epage><pages>1273-1289</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a novel bi-model committee evolutionary artificial neural network (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h ahead using inputs of past/current CSO level data, radar rainfall data and forecast forecasted rainfall data. The model is composed of two evolutionary artificial neural network (EANN) models. The two models are trained and optimised for wet and dry weather conditions respectively and their results combined into a single response using a non-linear weighted averaging approach. An evolutionary strategy algorithm is employed to automatically select the optimal artificial neural network (ANN) structure and parameter set, allowing the network to be tailored specifically for different CSO locations and forecast horizons without significant human input. The CEANN model was tested and evaluated on real level data from 4 CSOs located in Northern England and the results compared to three other ANN models. The results demonstrate that the CEANN model is superior in terms of accuracy for almost all forecast horizons considered. It is able to accurately forecast the dry weather and wet weather level, predicting the timing and magnitude of upcoming spill events, thus providing information that is of clear use to a wastewater utility.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-021-02780-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8956-3058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2021-03, Vol.35 (4), p.1273-1289
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_journals_2505799390
source SpringerNature Journals
subjects Artificial neural networks
Atmospheric Sciences
Civil Engineering
Combined sewer overflows
Data
Earth and Environmental Science
Earth Sciences
Environment
Evolution
Evolutionary algorithms
Flooding
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrology/Water Resources
Mitigation
Model accuracy
Model testing
Neural networks
Pollution sources
Radar
Rain
Rainfall
Wastewater
Water levels
Water pollution
Weather
Weather forecasting
title A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Committee%20Evolutionary%20Neural%20Network%20for%20the%20Prediction%20of%20Combined%20Sewer%20Overflows&rft.jtitle=Water%20resources%20management&rft.au=Rosin,%20T.%20R.&rft.date=2021-03-01&rft.volume=35&rft.issue=4&rft.spage=1273&rft.epage=1289&rft.pages=1273-1289&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-021-02780-z&rft_dat=%3Cproquest_cross%3E2505799390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505799390&rft_id=info:pmid/&rfr_iscdi=true