A viscoelastic – viscoplastic material model for superalloy applications
•Rate dependencies are experimentally observed for a wide range of time scales and load magnitudes.•Viscoelastic effects (rate dependency below yield) are often neglected in the literature.•A thermodynamically based viscoelastic – viscoplastic model is developed here using RR1000 data.•Model paramet...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2020-07, Vol.136, p.105579, Article 105579 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105579 |
container_title | International journal of fatigue |
container_volume | 136 |
creator | Rouse, J.P. Engel, B. Hyde, C.J. Pattison, S.J. Whittaker, M.T. Jones, J.P. Cockings, B. Barnard, N.C. |
description | •Rate dependencies are experimentally observed for a wide range of time scales and load magnitudes.•Viscoelastic effects (rate dependency below yield) are often neglected in the literature.•A thermodynamically based viscoelastic – viscoplastic model is developed here using RR1000 data.•Model parameter determination methods are proposed and demonstrated for 750 °C isothermal conditions.•Extensions to include an-isothermal effects are proposed using the thermodynamic basis.
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data. |
doi_str_mv | 10.1016/j.ijfatigue.2020.105579 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505726761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112320301109</els_id><sourcerecordid>2505726761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d121df44de86daabf7af37dd603e6cd1199c8a72a0131d85e6b3a8079696851e3</originalsourceid><addsrcrecordid>eNqFkEtqwzAQhkVpoenjDDV07VQj2ZK1DKFPAt20a6FI4yLjRK5kB7LrHXrDnqQODt12NfDzP5iPkBugc6Ag7pq5b2rT-48B54yyg1qWUp2QGVRS5bwo2SmZUShYDsD4OblIqaGUKirLGXlZZDufbMDWpN7b7OfrexK6o7AxPUZv2mwTHLZZHWKWhg6jaduwz0zXtd6O62GbrshZbdqE18d7Sd4f7t-WT_nq9fF5uVjllivW5w4YuLooHFbCGbOupam5dE5QjsI6AKVsZSQzFDi4qkSx5qaiUgklqhKQX5LbqbeL4XPA1OsmDHE7TmpW0lIyIQWMLjm5bAwpRax1F_3GxL0Gqg_gdKP_wOkDOD2BG5OLKYnjEzuPUSfrcWvR-Yi21y74fzt-AdHzfJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726761</pqid></control><display><type>article</type><title>A viscoelastic – viscoplastic material model for superalloy applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rouse, J.P. ; Engel, B. ; Hyde, C.J. ; Pattison, S.J. ; Whittaker, M.T. ; Jones, J.P. ; Cockings, B. ; Barnard, N.C.</creator><creatorcontrib>Rouse, J.P. ; Engel, B. ; Hyde, C.J. ; Pattison, S.J. ; Whittaker, M.T. ; Jones, J.P. ; Cockings, B. ; Barnard, N.C.</creatorcontrib><description>•Rate dependencies are experimentally observed for a wide range of time scales and load magnitudes.•Viscoelastic effects (rate dependency below yield) are often neglected in the literature.•A thermodynamically based viscoelastic – viscoplastic model is developed here using RR1000 data.•Model parameter determination methods are proposed and demonstrated for 750 °C isothermal conditions.•Extensions to include an-isothermal effects are proposed using the thermodynamic basis.
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2020.105579</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Critical components ; Deformation effects ; Dependence ; Elastic deformation ; Extreme environments ; Materials fatigue ; Nickel base alloys ; RR1000 ; Stress relaxation ; Superalloy ; Superalloys ; Transient response ; Viscoelasticity ; Viscoplastic materials ; Viscoplasticity</subject><ispartof>International journal of fatigue, 2020-07, Vol.136, p.105579, Article 105579</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d121df44de86daabf7af37dd603e6cd1199c8a72a0131d85e6b3a8079696851e3</citedby><cites>FETCH-LOGICAL-c392t-d121df44de86daabf7af37dd603e6cd1199c8a72a0131d85e6b3a8079696851e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2020.105579$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rouse, J.P.</creatorcontrib><creatorcontrib>Engel, B.</creatorcontrib><creatorcontrib>Hyde, C.J.</creatorcontrib><creatorcontrib>Pattison, S.J.</creatorcontrib><creatorcontrib>Whittaker, M.T.</creatorcontrib><creatorcontrib>Jones, J.P.</creatorcontrib><creatorcontrib>Cockings, B.</creatorcontrib><creatorcontrib>Barnard, N.C.</creatorcontrib><title>A viscoelastic – viscoplastic material model for superalloy applications</title><title>International journal of fatigue</title><description>•Rate dependencies are experimentally observed for a wide range of time scales and load magnitudes.•Viscoelastic effects (rate dependency below yield) are often neglected in the literature.•A thermodynamically based viscoelastic – viscoplastic model is developed here using RR1000 data.•Model parameter determination methods are proposed and demonstrated for 750 °C isothermal conditions.•Extensions to include an-isothermal effects are proposed using the thermodynamic basis.
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.</description><subject>Critical components</subject><subject>Deformation effects</subject><subject>Dependence</subject><subject>Elastic deformation</subject><subject>Extreme environments</subject><subject>Materials fatigue</subject><subject>Nickel base alloys</subject><subject>RR1000</subject><subject>Stress relaxation</subject><subject>Superalloy</subject><subject>Superalloys</subject><subject>Transient response</subject><subject>Viscoelasticity</subject><subject>Viscoplastic materials</subject><subject>Viscoplasticity</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtqwzAQhkVpoenjDDV07VQj2ZK1DKFPAt20a6FI4yLjRK5kB7LrHXrDnqQODt12NfDzP5iPkBugc6Ag7pq5b2rT-48B54yyg1qWUp2QGVRS5bwo2SmZUShYDsD4OblIqaGUKirLGXlZZDufbMDWpN7b7OfrexK6o7AxPUZv2mwTHLZZHWKWhg6jaduwz0zXtd6O62GbrshZbdqE18d7Sd4f7t-WT_nq9fF5uVjllivW5w4YuLooHFbCGbOupam5dE5QjsI6AKVsZSQzFDi4qkSx5qaiUgklqhKQX5LbqbeL4XPA1OsmDHE7TmpW0lIyIQWMLjm5bAwpRax1F_3GxL0Gqg_gdKP_wOkDOD2BG5OLKYnjEzuPUSfrcWvR-Yi21y74fzt-AdHzfJ0</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Rouse, J.P.</creator><creator>Engel, B.</creator><creator>Hyde, C.J.</creator><creator>Pattison, S.J.</creator><creator>Whittaker, M.T.</creator><creator>Jones, J.P.</creator><creator>Cockings, B.</creator><creator>Barnard, N.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202007</creationdate><title>A viscoelastic – viscoplastic material model for superalloy applications</title><author>Rouse, J.P. ; Engel, B. ; Hyde, C.J. ; Pattison, S.J. ; Whittaker, M.T. ; Jones, J.P. ; Cockings, B. ; Barnard, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d121df44de86daabf7af37dd603e6cd1199c8a72a0131d85e6b3a8079696851e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Critical components</topic><topic>Deformation effects</topic><topic>Dependence</topic><topic>Elastic deformation</topic><topic>Extreme environments</topic><topic>Materials fatigue</topic><topic>Nickel base alloys</topic><topic>RR1000</topic><topic>Stress relaxation</topic><topic>Superalloy</topic><topic>Superalloys</topic><topic>Transient response</topic><topic>Viscoelasticity</topic><topic>Viscoplastic materials</topic><topic>Viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouse, J.P.</creatorcontrib><creatorcontrib>Engel, B.</creatorcontrib><creatorcontrib>Hyde, C.J.</creatorcontrib><creatorcontrib>Pattison, S.J.</creatorcontrib><creatorcontrib>Whittaker, M.T.</creatorcontrib><creatorcontrib>Jones, J.P.</creatorcontrib><creatorcontrib>Cockings, B.</creatorcontrib><creatorcontrib>Barnard, N.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouse, J.P.</au><au>Engel, B.</au><au>Hyde, C.J.</au><au>Pattison, S.J.</au><au>Whittaker, M.T.</au><au>Jones, J.P.</au><au>Cockings, B.</au><au>Barnard, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viscoelastic – viscoplastic material model for superalloy applications</atitle><jtitle>International journal of fatigue</jtitle><date>2020-07</date><risdate>2020</risdate><volume>136</volume><spage>105579</spage><pages>105579-</pages><artnum>105579</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Rate dependencies are experimentally observed for a wide range of time scales and load magnitudes.•Viscoelastic effects (rate dependency below yield) are often neglected in the literature.•A thermodynamically based viscoelastic – viscoplastic model is developed here using RR1000 data.•Model parameter determination methods are proposed and demonstrated for 750 °C isothermal conditions.•Extensions to include an-isothermal effects are proposed using the thermodynamic basis.
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2020.105579</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2020-07, Vol.136, p.105579, Article 105579 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2505726761 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Critical components Deformation effects Dependence Elastic deformation Extreme environments Materials fatigue Nickel base alloys RR1000 Stress relaxation Superalloy Superalloys Transient response Viscoelasticity Viscoplastic materials Viscoplasticity |
title | A viscoelastic – viscoplastic material model for superalloy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viscoelastic%20%E2%80%93%20viscoplastic%20material%20model%20for%20superalloy%20applications&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Rouse,%20J.P.&rft.date=2020-07&rft.volume=136&rft.spage=105579&rft.pages=105579-&rft.artnum=105579&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2020.105579&rft_dat=%3Cproquest_cross%3E2505726761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505726761&rft_id=info:pmid/&rft_els_id=S0142112320301109&rfr_iscdi=true |