High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production
•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow vel...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-02, Vol.370 (C), p.137751, Article 137751 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 137751 |
container_title | Electrochimica acta |
container_volume | 370 |
creator | Li, Yifan Yang, Gaoqiang Yu, Shule Mo, Jingke Li, Kui Xie, Zhiqiang Ding, Lei Wang, Weitian Zhang, Feng-Yuan |
description | •Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities.
Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future. |
doi_str_mv | 10.1016/j.electacta.2021.137751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2505726372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621000402</els_id><sourcerecordid>2505726372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</originalsourceid><addsrcrecordid>eNqFkU-L1TAUxYso-Bz9DAZd95k_TZouh0EdYWA24zqkyc00j76kJqmP56eflIpb4cLdnHs493ea5iPBR4KJ-HI6wgym6DpHiik5Etb3nLxqDkT2rGWSD6-bA8aEtZ2Q4m3zLucTxrgXPT40l3v_PLV5AbDITDpVG0j-jy4-BhQdKpfYLpPOgNwcL0gHi8Z1HGdA9hr02ZuMfEDFFx38ekYO5oKWmOKa0Rms18jFhKarTfEZAlpStKvZvN83b5yeM3z4u2-an9--Pt3dtw-P33_c3T60ppO8tJpLarphdMJoJrEeGIxcEkOpHN1gO2tGTkRnQRDGJZaCak4dHUaBrewHzG6aT7tvzMWrbHwBM5kYQkWmSAVVUVXR511U8_1aIRd1imsKNZeiHPOeCtbTqup3lUkx5wROLcmfdboqgtVWhTqpf1WorQq1V1Evb_dLqJ_-9pC2IBBMBZS2HDb6_3q8ALGwl1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726372</pqid></control><display><type>article</type><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</creator><creatorcontrib>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</creatorcontrib><description>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities.
Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.137751</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Annular flow ; Bubble detachment ; Bubbles ; Channels ; Current density ; Design optimization ; Diffusion layers ; Diffusion rate ; Electrochemical reaction ; Electrolytic cells ; Flow velocity ; Flow-density-speed relationships ; Gaseous diffusion ; High speed ; Hydrogen energy ; Hydrogen production ; Liquefied gases ; Low currents ; Morphology ; Multiphase flow ; Oxygen bubble ; Porosity ; Porous media ; Proton exchange membrane electrolyzer cells ; Slugs ; Titanium ; Two phase flow</subject><ispartof>Electrochimica acta, 2021-02, Vol.370 (C), p.137751, Article 137751</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</citedby><cites>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</cites><orcidid>0000-0003-2535-0966 ; 0000000325350966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.137751$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Yang, Gaoqiang</creatorcontrib><creatorcontrib>Yu, Shule</creatorcontrib><creatorcontrib>Mo, Jingke</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Xie, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><title>Electrochimica acta</title><description>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities.
Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</description><subject>Annular flow</subject><subject>Bubble detachment</subject><subject>Bubbles</subject><subject>Channels</subject><subject>Current density</subject><subject>Design optimization</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Electrochemical reaction</subject><subject>Electrolytic cells</subject><subject>Flow velocity</subject><subject>Flow-density-speed relationships</subject><subject>Gaseous diffusion</subject><subject>High speed</subject><subject>Hydrogen energy</subject><subject>Hydrogen production</subject><subject>Liquefied gases</subject><subject>Low currents</subject><subject>Morphology</subject><subject>Multiphase flow</subject><subject>Oxygen bubble</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Proton exchange membrane electrolyzer cells</subject><subject>Slugs</subject><subject>Titanium</subject><subject>Two phase flow</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU-L1TAUxYso-Bz9DAZd95k_TZouh0EdYWA24zqkyc00j76kJqmP56eflIpb4cLdnHs493ea5iPBR4KJ-HI6wgym6DpHiik5Etb3nLxqDkT2rGWSD6-bA8aEtZ2Q4m3zLucTxrgXPT40l3v_PLV5AbDITDpVG0j-jy4-BhQdKpfYLpPOgNwcL0gHi8Z1HGdA9hr02ZuMfEDFFx38ekYO5oKWmOKa0Rms18jFhKarTfEZAlpStKvZvN83b5yeM3z4u2-an9--Pt3dtw-P33_c3T60ppO8tJpLarphdMJoJrEeGIxcEkOpHN1gO2tGTkRnQRDGJZaCak4dHUaBrewHzG6aT7tvzMWrbHwBM5kYQkWmSAVVUVXR511U8_1aIRd1imsKNZeiHPOeCtbTqup3lUkx5wROLcmfdboqgtVWhTqpf1WorQq1V1Evb_dLqJ_-9pC2IBBMBZS2HDb6_3q8ALGwl1w</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Li, Yifan</creator><creator>Yang, Gaoqiang</creator><creator>Yu, Shule</creator><creator>Mo, Jingke</creator><creator>Li, Kui</creator><creator>Xie, Zhiqiang</creator><creator>Ding, Lei</creator><creator>Wang, Weitian</creator><creator>Zhang, Feng-Yuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2535-0966</orcidid><orcidid>https://orcid.org/0000000325350966</orcidid></search><sort><creationdate>20210220</creationdate><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><author>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annular flow</topic><topic>Bubble detachment</topic><topic>Bubbles</topic><topic>Channels</topic><topic>Current density</topic><topic>Design optimization</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Electrochemical reaction</topic><topic>Electrolytic cells</topic><topic>Flow velocity</topic><topic>Flow-density-speed relationships</topic><topic>Gaseous diffusion</topic><topic>High speed</topic><topic>Hydrogen energy</topic><topic>Hydrogen production</topic><topic>Liquefied gases</topic><topic>Low currents</topic><topic>Morphology</topic><topic>Multiphase flow</topic><topic>Oxygen bubble</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Proton exchange membrane electrolyzer cells</topic><topic>Slugs</topic><topic>Titanium</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Yang, Gaoqiang</creatorcontrib><creatorcontrib>Yu, Shule</creatorcontrib><creatorcontrib>Mo, Jingke</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Xie, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yifan</au><au>Yang, Gaoqiang</au><au>Yu, Shule</au><au>Mo, Jingke</au><au>Li, Kui</au><au>Xie, Zhiqiang</au><au>Ding, Lei</au><au>Wang, Weitian</au><au>Zhang, Feng-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-20</date><risdate>2021</risdate><volume>370</volume><issue>C</issue><spage>137751</spage><pages>137751-</pages><artnum>137751</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities.
Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.137751</doi><orcidid>https://orcid.org/0000-0003-2535-0966</orcidid><orcidid>https://orcid.org/0000000325350966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-02, Vol.370 (C), p.137751, Article 137751 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2505726372 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Annular flow Bubble detachment Bubbles Channels Current density Design optimization Diffusion layers Diffusion rate Electrochemical reaction Electrolytic cells Flow velocity Flow-density-speed relationships Gaseous diffusion High speed Hydrogen energy Hydrogen production Liquefied gases Low currents Morphology Multiphase flow Oxygen bubble Porosity Porous media Proton exchange membrane electrolyzer cells Slugs Titanium Two phase flow |
title | High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20characterization%20of%20two-phase%20flow%20and%20bubble%20dynamics%20in%20titanium%20felt%20porous%20media%20for%20hydrogen%20production&rft.jtitle=Electrochimica%20acta&rft.au=Li,%20Yifan&rft.date=2021-02-20&rft.volume=370&rft.issue=C&rft.spage=137751&rft.pages=137751-&rft.artnum=137751&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.137751&rft_dat=%3Cproquest_osti_%3E2505726372%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505726372&rft_id=info:pmid/&rft_els_id=S0013468621000402&rfr_iscdi=true |