High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production

•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow vel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-02, Vol.370 (C), p.137751, Article 137751
Hauptverfasser: Li, Yifan, Yang, Gaoqiang, Yu, Shule, Mo, Jingke, Li, Kui, Xie, Zhiqiang, Ding, Lei, Wang, Weitian, Zhang, Feng-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 137751
container_title Electrochimica acta
container_volume 370
creator Li, Yifan
Yang, Gaoqiang
Yu, Shule
Mo, Jingke
Li, Kui
Xie, Zhiqiang
Ding, Lei
Wang, Weitian
Zhang, Feng-Yuan
description •Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities. Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.
doi_str_mv 10.1016/j.electacta.2021.137751
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2505726372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621000402</els_id><sourcerecordid>2505726372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</originalsourceid><addsrcrecordid>eNqFkU-L1TAUxYso-Bz9DAZd95k_TZouh0EdYWA24zqkyc00j76kJqmP56eflIpb4cLdnHs493ea5iPBR4KJ-HI6wgym6DpHiik5Etb3nLxqDkT2rGWSD6-bA8aEtZ2Q4m3zLucTxrgXPT40l3v_PLV5AbDITDpVG0j-jy4-BhQdKpfYLpPOgNwcL0gHi8Z1HGdA9hr02ZuMfEDFFx38ekYO5oKWmOKa0Rms18jFhKarTfEZAlpStKvZvN83b5yeM3z4u2-an9--Pt3dtw-P33_c3T60ppO8tJpLarphdMJoJrEeGIxcEkOpHN1gO2tGTkRnQRDGJZaCak4dHUaBrewHzG6aT7tvzMWrbHwBM5kYQkWmSAVVUVXR511U8_1aIRd1imsKNZeiHPOeCtbTqup3lUkx5wROLcmfdboqgtVWhTqpf1WorQq1V1Evb_dLqJ_-9pC2IBBMBZS2HDb6_3q8ALGwl1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726372</pqid></control><display><type>article</type><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</creator><creatorcontrib>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</creatorcontrib><description>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities. Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.137751</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Annular flow ; Bubble detachment ; Bubbles ; Channels ; Current density ; Design optimization ; Diffusion layers ; Diffusion rate ; Electrochemical reaction ; Electrolytic cells ; Flow velocity ; Flow-density-speed relationships ; Gaseous diffusion ; High speed ; Hydrogen energy ; Hydrogen production ; Liquefied gases ; Low currents ; Morphology ; Multiphase flow ; Oxygen bubble ; Porosity ; Porous media ; Proton exchange membrane electrolyzer cells ; Slugs ; Titanium ; Two phase flow</subject><ispartof>Electrochimica acta, 2021-02, Vol.370 (C), p.137751, Article 137751</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</citedby><cites>FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</cites><orcidid>0000-0003-2535-0966 ; 0000000325350966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.137751$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Yang, Gaoqiang</creatorcontrib><creatorcontrib>Yu, Shule</creatorcontrib><creatorcontrib>Mo, Jingke</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Xie, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><title>Electrochimica acta</title><description>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities. Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</description><subject>Annular flow</subject><subject>Bubble detachment</subject><subject>Bubbles</subject><subject>Channels</subject><subject>Current density</subject><subject>Design optimization</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Electrochemical reaction</subject><subject>Electrolytic cells</subject><subject>Flow velocity</subject><subject>Flow-density-speed relationships</subject><subject>Gaseous diffusion</subject><subject>High speed</subject><subject>Hydrogen energy</subject><subject>Hydrogen production</subject><subject>Liquefied gases</subject><subject>Low currents</subject><subject>Morphology</subject><subject>Multiphase flow</subject><subject>Oxygen bubble</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Proton exchange membrane electrolyzer cells</subject><subject>Slugs</subject><subject>Titanium</subject><subject>Two phase flow</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU-L1TAUxYso-Bz9DAZd95k_TZouh0EdYWA24zqkyc00j76kJqmP56eflIpb4cLdnHs493ea5iPBR4KJ-HI6wgym6DpHiik5Etb3nLxqDkT2rGWSD6-bA8aEtZ2Q4m3zLucTxrgXPT40l3v_PLV5AbDITDpVG0j-jy4-BhQdKpfYLpPOgNwcL0gHi8Z1HGdA9hr02ZuMfEDFFx38ekYO5oKWmOKa0Rms18jFhKarTfEZAlpStKvZvN83b5yeM3z4u2-an9--Pt3dtw-P33_c3T60ppO8tJpLarphdMJoJrEeGIxcEkOpHN1gO2tGTkRnQRDGJZaCak4dHUaBrewHzG6aT7tvzMWrbHwBM5kYQkWmSAVVUVXR511U8_1aIRd1imsKNZeiHPOeCtbTqup3lUkx5wROLcmfdboqgtVWhTqpf1WorQq1V1Evb_dLqJ_-9pC2IBBMBZS2HDb6_3q8ALGwl1w</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Li, Yifan</creator><creator>Yang, Gaoqiang</creator><creator>Yu, Shule</creator><creator>Mo, Jingke</creator><creator>Li, Kui</creator><creator>Xie, Zhiqiang</creator><creator>Ding, Lei</creator><creator>Wang, Weitian</creator><creator>Zhang, Feng-Yuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2535-0966</orcidid><orcidid>https://orcid.org/0000000325350966</orcidid></search><sort><creationdate>20210220</creationdate><title>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</title><author>Li, Yifan ; Yang, Gaoqiang ; Yu, Shule ; Mo, Jingke ; Li, Kui ; Xie, Zhiqiang ; Ding, Lei ; Wang, Weitian ; Zhang, Feng-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a582c49bf6ca380a93eb581c228bf9d4dcb5164de613580862a52f29b60d87903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annular flow</topic><topic>Bubble detachment</topic><topic>Bubbles</topic><topic>Channels</topic><topic>Current density</topic><topic>Design optimization</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Electrochemical reaction</topic><topic>Electrolytic cells</topic><topic>Flow velocity</topic><topic>Flow-density-speed relationships</topic><topic>Gaseous diffusion</topic><topic>High speed</topic><topic>Hydrogen energy</topic><topic>Hydrogen production</topic><topic>Liquefied gases</topic><topic>Low currents</topic><topic>Morphology</topic><topic>Multiphase flow</topic><topic>Oxygen bubble</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Proton exchange membrane electrolyzer cells</topic><topic>Slugs</topic><topic>Titanium</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Yang, Gaoqiang</creatorcontrib><creatorcontrib>Yu, Shule</creatorcontrib><creatorcontrib>Mo, Jingke</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Xie, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhang, Feng-Yuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yifan</au><au>Yang, Gaoqiang</au><au>Yu, Shule</au><au>Mo, Jingke</au><au>Li, Kui</au><au>Xie, Zhiqiang</au><au>Ding, Lei</au><au>Wang, Weitian</au><au>Zhang, Feng-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-20</date><risdate>2021</risdate><volume>370</volume><issue>C</issue><spage>137751</spage><pages>137751-</pages><artnum>137751</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Rapid two-phase flow and micro oxygen bubble dynamics are in-situ visualized.•Bubble detachment diameters and frequencies increase with current density.•GDL structures and morphologies has a great impact on micro bubble detachments.•Slug flow tends to form at high current densities and low flow velocities. Bubble dynamics and two-phase flow phenomena are closely related to the performance of proton exchange membrane electrolyzer cells (PEMECs). This paper reports an in-situ study of the oxygen bubble behavior and associated multiphase evolutions in the anode side of PEMECs with titanium (Ti) felt liquid gas diffusion layers (LGDLs) by a high-speed visualization system. The micro oxygen bubble dynamics was captured and analyzed at different locations and virous operating conditions. The results show that the bubble detachment frequency and detachment diameter greatly increase with the operating current density. Additionally, they are significantly impacted by the local pore structure and morphology of Ti felt LGDLs. In the flow channels, there exist only several discrete micro bubbles at a low current density (0.04 A/cm2) and a large flow velocity (133 mm/s). At a current density (0.2 A/cm2) and a flow velocity (67 mm/s), a number of gas slugs are formed in the follow channels, in addition to discrete micro bubbles. At a high current density (1 A/cm2) and a flow velocity (67 mm/s), more bubbles appear in the channel, and the flow field is dominated by slug or annular flows. These investigations can help to better understand the two-phase flow and bubble detachment mechanism, and provide a foundation for electrochemical reaction, multiphase flow studies and optimize the design of gas diffusion layers and flow fields for PEMECs in the future.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.137751</doi><orcidid>https://orcid.org/0000-0003-2535-0966</orcidid><orcidid>https://orcid.org/0000000325350966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-02, Vol.370 (C), p.137751, Article 137751
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2505726372
source Elsevier ScienceDirect Journals Complete
subjects Annular flow
Bubble detachment
Bubbles
Channels
Current density
Design optimization
Diffusion layers
Diffusion rate
Electrochemical reaction
Electrolytic cells
Flow velocity
Flow-density-speed relationships
Gaseous diffusion
High speed
Hydrogen energy
Hydrogen production
Liquefied gases
Low currents
Morphology
Multiphase flow
Oxygen bubble
Porosity
Porous media
Proton exchange membrane electrolyzer cells
Slugs
Titanium
Two phase flow
title High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20characterization%20of%20two-phase%20flow%20and%20bubble%20dynamics%20in%20titanium%20felt%20porous%20media%20for%20hydrogen%20production&rft.jtitle=Electrochimica%20acta&rft.au=Li,%20Yifan&rft.date=2021-02-20&rft.volume=370&rft.issue=C&rft.spage=137751&rft.pages=137751-&rft.artnum=137751&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.137751&rft_dat=%3Cproquest_osti_%3E2505726372%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505726372&rft_id=info:pmid/&rft_els_id=S0013468621000402&rfr_iscdi=true