Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height

In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2020-09, Vol.80 (5), p.973-989
Hauptverfasser: Ballarin, Francesco, Chacón Rebollo, Tomás, Delgado Ávila, Enrique, Gómez Mármol, Macarena, Rozza, Gianluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 5
container_start_page 973
container_title Computers & mathematics with applications (1987)
container_volume 80
creator Ballarin, Francesco
Chacón Rebollo, Tomás
Delgado Ávila, Enrique
Gómez Mármol, Macarena
Rozza, Gianluigi
description In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.
doi_str_mv 10.1016/j.camwa.2020.05.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505725135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120302170</els_id><sourcerecordid>2505725135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1gsMSf4USf2wAAVL6kIiVasluNH65DGxU5a9d-TUmams5zv3KsPgGuMcoxwcVvnWq13KieIoByxHGF6AkaYlzQri4KfghHigmeYEHwOLlKqEUITStAI1FMbO--8NfDDml4P-aCST_DzbZ7N12oZom_T1x6ug7ENdCHCVnV9VA3Uod1a3fnQQteEHfQtVFCrre_2cOe7Fdyq6FXVWLiyfrnqLsGZU02yV385Bounx8X0JZu9P79O72eZpmXRZa4sNBPVhGuNDKsMs0I4iyeV4xxXlFJuSoEwE06ZiVKaKMFdYTQpBKOC0zG4Oc5uYvjubepkHfrYDhclYYiVhGHKhhY9tnQMKUXr5Cb6tYp7iZE8OJW1_HUqD04lYnJwOlB3R8oO_2-9jTJpb9vBmo-DCmmC_5f_AXiAgaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725135</pqid></control><display><type>article</type><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</creator><creatorcontrib>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</creatorcontrib><description>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.05.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>a posteriori error estimation ; Approximation ; Basis functions ; Boussinesq equations ; Eddy viscosity ; Empirical interpolation method ; Free convection ; Greedy algorithms ; Interpolation ; Mathematical models ; Parameters ; Reduced basis method ; Smagorinsky LES model</subject><ispartof>Computers &amp; mathematics with applications (1987), 2020-09, Vol.80 (5), p.973-989</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</citedby><cites>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</cites><orcidid>0000-0001-6460-3538 ; 0000-0001-7881-4045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122120302170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ballarin, Francesco</creatorcontrib><creatorcontrib>Chacón Rebollo, Tomás</creatorcontrib><creatorcontrib>Delgado Ávila, Enrique</creatorcontrib><creatorcontrib>Gómez Mármol, Macarena</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</description><subject>a posteriori error estimation</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boussinesq equations</subject><subject>Eddy viscosity</subject><subject>Empirical interpolation method</subject><subject>Free convection</subject><subject>Greedy algorithms</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Reduced basis method</subject><subject>Smagorinsky LES model</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1gsMSf4USf2wAAVL6kIiVasluNH65DGxU5a9d-TUmams5zv3KsPgGuMcoxwcVvnWq13KieIoByxHGF6AkaYlzQri4KfghHigmeYEHwOLlKqEUITStAI1FMbO--8NfDDml4P-aCST_DzbZ7N12oZom_T1x6ug7ENdCHCVnV9VA3Uod1a3fnQQteEHfQtVFCrre_2cOe7Fdyq6FXVWLiyfrnqLsGZU02yV385Bounx8X0JZu9P79O72eZpmXRZa4sNBPVhGuNDKsMs0I4iyeV4xxXlFJuSoEwE06ZiVKaKMFdYTQpBKOC0zG4Oc5uYvjubepkHfrYDhclYYiVhGHKhhY9tnQMKUXr5Cb6tYp7iZE8OJW1_HUqD04lYnJwOlB3R8oO_2-9jTJpb9vBmo-DCmmC_5f_AXiAgaU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ballarin, Francesco</creator><creator>Chacón Rebollo, Tomás</creator><creator>Delgado Ávila, Enrique</creator><creator>Gómez Mármol, Macarena</creator><creator>Rozza, Gianluigi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6460-3538</orcidid><orcidid>https://orcid.org/0000-0001-7881-4045</orcidid></search><sort><creationdate>20200901</creationdate><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><author>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>a posteriori error estimation</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boussinesq equations</topic><topic>Eddy viscosity</topic><topic>Empirical interpolation method</topic><topic>Free convection</topic><topic>Greedy algorithms</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Reduced basis method</topic><topic>Smagorinsky LES model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballarin, Francesco</creatorcontrib><creatorcontrib>Chacón Rebollo, Tomás</creatorcontrib><creatorcontrib>Delgado Ávila, Enrique</creatorcontrib><creatorcontrib>Gómez Mármol, Macarena</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballarin, Francesco</au><au>Chacón Rebollo, Tomás</au><au>Delgado Ávila, Enrique</au><au>Gómez Mármol, Macarena</au><au>Rozza, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>973</spage><epage>989</epage><pages>973-989</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.05.013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6460-3538</orcidid><orcidid>https://orcid.org/0000-0001-7881-4045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.973-989
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2505725135
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects a posteriori error estimation
Approximation
Basis functions
Boussinesq equations
Eddy viscosity
Empirical interpolation method
Free convection
Greedy algorithms
Interpolation
Mathematical models
Parameters
Reduced basis method
Smagorinsky LES model
title Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certified%20Reduced%20Basis%20VMS-Smagorinsky%20model%20for%20natural%20convection%20flow%20in%20a%20cavity%20with%20variable%20height&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ballarin,%20Francesco&rft.date=2020-09-01&rft.volume=80&rft.issue=5&rft.spage=973&rft.epage=989&rft.pages=973-989&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.05.013&rft_dat=%3Cproquest_cross%3E2505725135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505725135&rft_id=info:pmid/&rft_els_id=S0898122120302170&rfr_iscdi=true