Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height
In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh numbe...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2020-09, Vol.80 (5), p.973-989 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 5 |
container_start_page | 973 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 80 |
creator | Ballarin, Francesco Chacón Rebollo, Tomás Delgado Ávila, Enrique Gómez Mármol, Macarena Rozza, Gianluigi |
description | In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration. |
doi_str_mv | 10.1016/j.camwa.2020.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505725135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120302170</els_id><sourcerecordid>2505725135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1gsMSf4USf2wAAVL6kIiVasluNH65DGxU5a9d-TUmams5zv3KsPgGuMcoxwcVvnWq13KieIoByxHGF6AkaYlzQri4KfghHigmeYEHwOLlKqEUITStAI1FMbO--8NfDDml4P-aCST_DzbZ7N12oZom_T1x6ug7ENdCHCVnV9VA3Uod1a3fnQQteEHfQtVFCrre_2cOe7Fdyq6FXVWLiyfrnqLsGZU02yV385Bounx8X0JZu9P79O72eZpmXRZa4sNBPVhGuNDKsMs0I4iyeV4xxXlFJuSoEwE06ZiVKaKMFdYTQpBKOC0zG4Oc5uYvjubepkHfrYDhclYYiVhGHKhhY9tnQMKUXr5Cb6tYp7iZE8OJW1_HUqD04lYnJwOlB3R8oO_2-9jTJpb9vBmo-DCmmC_5f_AXiAgaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725135</pqid></control><display><type>article</type><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</creator><creatorcontrib>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</creatorcontrib><description>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.05.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>a posteriori error estimation ; Approximation ; Basis functions ; Boussinesq equations ; Eddy viscosity ; Empirical interpolation method ; Free convection ; Greedy algorithms ; Interpolation ; Mathematical models ; Parameters ; Reduced basis method ; Smagorinsky LES model</subject><ispartof>Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.973-989</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</citedby><cites>FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</cites><orcidid>0000-0001-6460-3538 ; 0000-0001-7881-4045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122120302170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ballarin, Francesco</creatorcontrib><creatorcontrib>Chacón Rebollo, Tomás</creatorcontrib><creatorcontrib>Delgado Ávila, Enrique</creatorcontrib><creatorcontrib>Gómez Mármol, Macarena</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><title>Computers & mathematics with applications (1987)</title><description>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</description><subject>a posteriori error estimation</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boussinesq equations</subject><subject>Eddy viscosity</subject><subject>Empirical interpolation method</subject><subject>Free convection</subject><subject>Greedy algorithms</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Reduced basis method</subject><subject>Smagorinsky LES model</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1gsMSf4USf2wAAVL6kIiVasluNH65DGxU5a9d-TUmams5zv3KsPgGuMcoxwcVvnWq13KieIoByxHGF6AkaYlzQri4KfghHigmeYEHwOLlKqEUITStAI1FMbO--8NfDDml4P-aCST_DzbZ7N12oZom_T1x6ug7ENdCHCVnV9VA3Uod1a3fnQQteEHfQtVFCrre_2cOe7Fdyq6FXVWLiyfrnqLsGZU02yV385Bounx8X0JZu9P79O72eZpmXRZa4sNBPVhGuNDKsMs0I4iyeV4xxXlFJuSoEwE06ZiVKaKMFdYTQpBKOC0zG4Oc5uYvjubepkHfrYDhclYYiVhGHKhhY9tnQMKUXr5Cb6tYp7iZE8OJW1_HUqD04lYnJwOlB3R8oO_2-9jTJpb9vBmo-DCmmC_5f_AXiAgaU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ballarin, Francesco</creator><creator>Chacón Rebollo, Tomás</creator><creator>Delgado Ávila, Enrique</creator><creator>Gómez Mármol, Macarena</creator><creator>Rozza, Gianluigi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6460-3538</orcidid><orcidid>https://orcid.org/0000-0001-7881-4045</orcidid></search><sort><creationdate>20200901</creationdate><title>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</title><author>Ballarin, Francesco ; Chacón Rebollo, Tomás ; Delgado Ávila, Enrique ; Gómez Mármol, Macarena ; Rozza, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f76c59b48cc0d5bd5e99fe14bf881b3338d790159fad4aac2a98f6dc26953983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>a posteriori error estimation</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boussinesq equations</topic><topic>Eddy viscosity</topic><topic>Empirical interpolation method</topic><topic>Free convection</topic><topic>Greedy algorithms</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Reduced basis method</topic><topic>Smagorinsky LES model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballarin, Francesco</creatorcontrib><creatorcontrib>Chacón Rebollo, Tomás</creatorcontrib><creatorcontrib>Delgado Ávila, Enrique</creatorcontrib><creatorcontrib>Gómez Mármol, Macarena</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballarin, Francesco</au><au>Chacón Rebollo, Tomás</au><au>Delgado Ávila, Enrique</au><au>Gómez Mármol, Macarena</au><au>Rozza, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>973</spage><epage>989</epage><pages>973-989</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.05.013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6460-3538</orcidid><orcidid>https://orcid.org/0000-0001-7881-4045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.973-989 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2505725135 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | a posteriori error estimation Approximation Basis functions Boussinesq equations Eddy viscosity Empirical interpolation method Free convection Greedy algorithms Interpolation Mathematical models Parameters Reduced basis method Smagorinsky LES model |
title | Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certified%20Reduced%20Basis%20VMS-Smagorinsky%20model%20for%20natural%20convection%20flow%20in%20a%20cavity%20with%20variable%20height&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ballarin,%20Francesco&rft.date=2020-09-01&rft.volume=80&rft.issue=5&rft.spage=973&rft.epage=989&rft.pages=973-989&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.05.013&rft_dat=%3Cproquest_cross%3E2505725135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505725135&rft_id=info:pmid/&rft_els_id=S0898122120302170&rfr_iscdi=true |