Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds
In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plur...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-04, Vol.31 (4), p.3783-3819 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3819 |
---|---|
container_issue | 4 |
container_start_page | 3783 |
container_title | The Journal of Geometric Analysis |
container_volume | 31 |
creator | Hai, Le Mau Hiep, Pham Hoang Tung, Trinh |
description | In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions. |
doi_str_mv | 10.1007/s12220-020-00414-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2505720707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340272</galeid><sourcerecordid>A707340272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuA19V8tOl6OcbmhIEXTvQupMnpx-iSmmSC_97UCt5JOCTn8LxvQt4kuSX4nmBcPHhCKcUpHgtnJEvJWTIjeV7Glr6fxzPOccpLyi-TK-8PEeIsK2bJYe1Dd5QBPLI12sEn9OgFwk-3tb09Wje0nUKbk1Ghs8YjaTRaDkPfKTkNgkWhBfQGXdMG0GhnG7SSxppI9GjfOvCt7bW_Ti5q2Xu4-d3nyetmvV9t093z49NquUsVyxchBV2TbJEXtGCUc12xSimtGCMLrnWtOc5lnXHIWFnyjGnCcVVqLkvF86osGWXz5G7yHZz9OIEP4mBPzsQrBc1xNMYFLiJ1P1GN7EF0prbBSRWXhmOnrIG6i_PliGaYFqMtnQTKWe8d1GJw8efclyBYjCGIKQSBxxpDECSK2CTyETYNuL-3_KP6BkFoiaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505720707</pqid></control><display><type>article</type><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><source>SpringerLink Journals</source><creator>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</creator><creatorcontrib>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</creatorcontrib><description>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00414-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Analytic functions ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Estimates ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Harmonic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Thresholds</subject><ispartof>The Journal of Geometric Analysis, 2021-04, Vol.31 (4), p.3783-3819</ispartof><rights>Mathematica Josephina, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</citedby><cites>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-020-00414-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-020-00414-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Tung, Trinh</creatorcontrib><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</description><subject>Abstract Harmonic Analysis</subject><subject>Analytic functions</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Estimates</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Thresholds</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuA19V8tOl6OcbmhIEXTvQupMnpx-iSmmSC_97UCt5JOCTn8LxvQt4kuSX4nmBcPHhCKcUpHgtnJEvJWTIjeV7Glr6fxzPOccpLyi-TK-8PEeIsK2bJYe1Dd5QBPLI12sEn9OgFwk-3tb09Wje0nUKbk1Ghs8YjaTRaDkPfKTkNgkWhBfQGXdMG0GhnG7SSxppI9GjfOvCt7bW_Ti5q2Xu4-d3nyetmvV9t093z49NquUsVyxchBV2TbJEXtGCUc12xSimtGCMLrnWtOc5lnXHIWFnyjGnCcVVqLkvF86osGWXz5G7yHZz9OIEP4mBPzsQrBc1xNMYFLiJ1P1GN7EF0prbBSRWXhmOnrIG6i_PliGaYFqMtnQTKWe8d1GJw8efclyBYjCGIKQSBxxpDECSK2CTyETYNuL-3_KP6BkFoiaw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hai, Le Mau</creator><creator>Hiep, Pham Hoang</creator><creator>Tung, Trinh</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20210401</creationdate><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><author>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analytic functions</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Estimates</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Tung, Trinh</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Le Mau</au><au>Hiep, Pham Hoang</au><au>Tung, Trinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>3783</spage><epage>3819</epage><pages>3783-3819</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00414-1</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2021-04, Vol.31 (4), p.3783-3819 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2505720707 |
source | SpringerLink Journals |
subjects | Abstract Harmonic Analysis Analytic functions Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Estimates Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Harmonic functions Mathematical analysis Mathematics Mathematics and Statistics Thresholds |
title | Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20Level%20Sets%20of%20Holomorphic%20Functions%20and%20Applications%20to%20the%20Weighted%20Log%20Canonical%20Thresholds&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Hai,%20Le%20Mau&rft.date=2021-04-01&rft.volume=31&rft.issue=4&rft.spage=3783&rft.epage=3819&rft.pages=3783-3819&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00414-1&rft_dat=%3Cgale_proqu%3EA707340272%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505720707&rft_id=info:pmid/&rft_galeid=A707340272&rfr_iscdi=true |