Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds

In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-04, Vol.31 (4), p.3783-3819
Hauptverfasser: Hai, Le Mau, Hiep, Pham Hoang, Tung, Trinh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3819
container_issue 4
container_start_page 3783
container_title The Journal of Geometric Analysis
container_volume 31
creator Hai, Le Mau
Hiep, Pham Hoang
Tung, Trinh
description In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.
doi_str_mv 10.1007/s12220-020-00414-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2505720707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340272</galeid><sourcerecordid>A707340272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuA19V8tOl6OcbmhIEXTvQupMnpx-iSmmSC_97UCt5JOCTn8LxvQt4kuSX4nmBcPHhCKcUpHgtnJEvJWTIjeV7Glr6fxzPOccpLyi-TK-8PEeIsK2bJYe1Dd5QBPLI12sEn9OgFwk-3tb09Wje0nUKbk1Ghs8YjaTRaDkPfKTkNgkWhBfQGXdMG0GhnG7SSxppI9GjfOvCt7bW_Ti5q2Xu4-d3nyetmvV9t093z49NquUsVyxchBV2TbJEXtGCUc12xSimtGCMLrnWtOc5lnXHIWFnyjGnCcVVqLkvF86osGWXz5G7yHZz9OIEP4mBPzsQrBc1xNMYFLiJ1P1GN7EF0prbBSRWXhmOnrIG6i_PliGaYFqMtnQTKWe8d1GJw8efclyBYjCGIKQSBxxpDECSK2CTyETYNuL-3_KP6BkFoiaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505720707</pqid></control><display><type>article</type><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><source>SpringerLink Journals</source><creator>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</creator><creatorcontrib>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</creatorcontrib><description>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00414-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Analytic functions ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Estimates ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Harmonic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Thresholds</subject><ispartof>The Journal of Geometric Analysis, 2021-04, Vol.31 (4), p.3783-3819</ispartof><rights>Mathematica Josephina, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</citedby><cites>FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-020-00414-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-020-00414-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Tung, Trinh</creatorcontrib><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</description><subject>Abstract Harmonic Analysis</subject><subject>Analytic functions</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Estimates</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Thresholds</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuA19V8tOl6OcbmhIEXTvQupMnpx-iSmmSC_97UCt5JOCTn8LxvQt4kuSX4nmBcPHhCKcUpHgtnJEvJWTIjeV7Glr6fxzPOccpLyi-TK-8PEeIsK2bJYe1Dd5QBPLI12sEn9OgFwk-3tb09Wje0nUKbk1Ghs8YjaTRaDkPfKTkNgkWhBfQGXdMG0GhnG7SSxppI9GjfOvCt7bW_Ti5q2Xu4-d3nyetmvV9t093z49NquUsVyxchBV2TbJEXtGCUc12xSimtGCMLrnWtOc5lnXHIWFnyjGnCcVVqLkvF86osGWXz5G7yHZz9OIEP4mBPzsQrBc1xNMYFLiJ1P1GN7EF0prbBSRWXhmOnrIG6i_PliGaYFqMtnQTKWe8d1GJw8efclyBYjCGIKQSBxxpDECSK2CTyETYNuL-3_KP6BkFoiaw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hai, Le Mau</creator><creator>Hiep, Pham Hoang</creator><creator>Tung, Trinh</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20210401</creationdate><title>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</title><author>Hai, Le Mau ; Hiep, Pham Hoang ; Tung, Trinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-edf14857273266db3bccdc33186ddfd605af46e4399643d160b9d6a9c65b99323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analytic functions</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Estimates</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Tung, Trinh</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Le Mau</au><au>Hiep, Pham Hoang</au><au>Tung, Trinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>3783</spage><epage>3819</epage><pages>3783-3819</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we establish some estimates of level sets of holomorphic functions. Relying on obtained estimates we compute some of the weighted log canonical thresholds of plurisubharmonic functions. Finally, we prove the analyticity of the sublevel sets of weighted log canonical thresholds of plurisubharmonic functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00414-1</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-04, Vol.31 (4), p.3783-3819
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2505720707
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Analytic functions
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Estimates
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Harmonic functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Thresholds
title Estimates of Level Sets of Holomorphic Functions and Applications to the Weighted Log Canonical Thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20Level%20Sets%20of%20Holomorphic%20Functions%20and%20Applications%20to%20the%20Weighted%20Log%20Canonical%20Thresholds&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Hai,%20Le%20Mau&rft.date=2021-04-01&rft.volume=31&rft.issue=4&rft.spage=3783&rft.epage=3819&rft.pages=3783-3819&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00414-1&rft_dat=%3Cgale_proqu%3EA707340272%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505720707&rft_id=info:pmid/&rft_galeid=A707340272&rfr_iscdi=true