A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications

Despite the many past research conducted in the Cloud Computing field, some challenges still exist related to workload balancing in cloud-based applications and specifically in the Infrastructure as service (IaaS) cloud model. Efficient allocation of tasks is a crucial process in cloud computing due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.41731-41744
Hauptverfasser: Shafiq, Dalia Abdulkareem, Jhanjhi, Noor Zaman, Abdullah, Azween, Alzain, Mohammed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41744
container_issue
container_start_page 41731
container_title IEEE access
container_volume 9
creator Shafiq, Dalia Abdulkareem
Jhanjhi, Noor Zaman
Abdullah, Azween
Alzain, Mohammed A.
description Despite the many past research conducted in the Cloud Computing field, some challenges still exist related to workload balancing in cloud-based applications and specifically in the Infrastructure as service (IaaS) cloud model. Efficient allocation of tasks is a crucial process in cloud computing due to the restricted number of resources/virtual machines. IaaS is one of the models of this technology that handles the backend where servers, data centers, and virtual machines are managed. Cloud Service Providers should ensure high service delivery performance in such models, avoiding situations such as hosts being overloaded or underloaded as this will result in higher execution time or machine failure, etc. Task Scheduling highly contributes to load balancing, and scheduling tasks much adheres to the requirements of the Service Level Agreement (SLA), a document offered by cloud developers to users. Important SLA parameters such as Deadline are addressed in the LB algorithm. The proposed algorithm is aimed to optimize resources and improve Load Balancing in view of the Quality of Service (QoS) task parameters, the priority of VMs, and resource allocation. The proposed LB algorithm addresses the stated issues and the current research gap based on the literature's findings. Results showed that the proposed LB algorithm results in an average of 78% resource utilization compared to the existing Dynamic LBA algorithm. It also achieves good performance in terms of less Execution time and Makespan.
doi_str_mv 10.1109/ACCESS.2021.3065308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505709647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9374987</ieee_id><doaj_id>oai_doaj_org_article_ef2e5c087a9c46a6b78772f0583d06c3</doaj_id><sourcerecordid>2505709647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-837b8feee7c0ae161efde6d3ab4da4457c70f12eb2b9bb0905902adb573fbfa3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWBhjS_IBdBz7sdSdbXceumbWAhh-SQmxjJ0kaL13Jl7aH99XXiEDqXGR7vvZnhNc0NhS2lYL7uuu724WHLgNEtByk46A_NJaPSbLjg8uN_86fmep6PsJReIKEum6cd2WfsyTcccPRpPJDdcMgl1ecTibmQ-hzId6xIujDWEmZSM7mfajqlv4F0Qz73pMun6VxfpdM0JI815XH-3FxEHOZw_davmscft4_dr83-_uddt9tvfAu6bjRXTscQgvKAgUoaYh9kz9G1PbatUF5BpCw45oxzYEAYYNg7oXh0EflVc7fa9hmPdirphOWPzZjsK5DLwWKpyQ_BhsiC8KAVGt9KlE5ppVgEoXkP0vPF68vqNZX8-xzmao_5XMblessECAVGtmph8ZXlS57nEuL7Vgr2JRC7BmJfArFvgSyqm1WVll_fFYar1mjF_wGugIb2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505709647</pqid></control><display><type>article</type><title>A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shafiq, Dalia Abdulkareem ; Jhanjhi, Noor Zaman ; Abdullah, Azween ; Alzain, Mohammed A.</creator><creatorcontrib>Shafiq, Dalia Abdulkareem ; Jhanjhi, Noor Zaman ; Abdullah, Azween ; Alzain, Mohammed A.</creatorcontrib><description>Despite the many past research conducted in the Cloud Computing field, some challenges still exist related to workload balancing in cloud-based applications and specifically in the Infrastructure as service (IaaS) cloud model. Efficient allocation of tasks is a crucial process in cloud computing due to the restricted number of resources/virtual machines. IaaS is one of the models of this technology that handles the backend where servers, data centers, and virtual machines are managed. Cloud Service Providers should ensure high service delivery performance in such models, avoiding situations such as hosts being overloaded or underloaded as this will result in higher execution time or machine failure, etc. Task Scheduling highly contributes to load balancing, and scheduling tasks much adheres to the requirements of the Service Level Agreement (SLA), a document offered by cloud developers to users. Important SLA parameters such as Deadline are addressed in the LB algorithm. The proposed algorithm is aimed to optimize resources and improve Load Balancing in view of the Quality of Service (QoS) task parameters, the priority of VMs, and resource allocation. The proposed LB algorithm addresses the stated issues and the current research gap based on the literature's findings. Results showed that the proposed LB algorithm results in an average of 78% resource utilization compared to the existing Dynamic LBA algorithm. It also achieves good performance in terms of less Execution time and Makespan.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3065308</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Data centers ; Heuristic algorithms ; Load balancing ; Load management ; Load modeling ; makespan ; Mathematical models ; optimization ; Parameters ; Processor scheduling ; QoS ; Resource allocation ; Resource management ; Resource utilization ; SLA ; Task analysis ; Task scheduling ; Virtual environments</subject><ispartof>IEEE access, 2021, Vol.9, p.41731-41744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-837b8feee7c0ae161efde6d3ab4da4457c70f12eb2b9bb0905902adb573fbfa3</citedby><cites>FETCH-LOGICAL-c408t-837b8feee7c0ae161efde6d3ab4da4457c70f12eb2b9bb0905902adb573fbfa3</cites><orcidid>0000-0001-8116-4733 ; 0000-0003-4425-8604 ; 0000-0001-5595-4280 ; 0000-0003-0061-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9374987$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shafiq, Dalia Abdulkareem</creatorcontrib><creatorcontrib>Jhanjhi, Noor Zaman</creatorcontrib><creatorcontrib>Abdullah, Azween</creatorcontrib><creatorcontrib>Alzain, Mohammed A.</creatorcontrib><title>A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Despite the many past research conducted in the Cloud Computing field, some challenges still exist related to workload balancing in cloud-based applications and specifically in the Infrastructure as service (IaaS) cloud model. Efficient allocation of tasks is a crucial process in cloud computing due to the restricted number of resources/virtual machines. IaaS is one of the models of this technology that handles the backend where servers, data centers, and virtual machines are managed. Cloud Service Providers should ensure high service delivery performance in such models, avoiding situations such as hosts being overloaded or underloaded as this will result in higher execution time or machine failure, etc. Task Scheduling highly contributes to load balancing, and scheduling tasks much adheres to the requirements of the Service Level Agreement (SLA), a document offered by cloud developers to users. Important SLA parameters such as Deadline are addressed in the LB algorithm. The proposed algorithm is aimed to optimize resources and improve Load Balancing in view of the Quality of Service (QoS) task parameters, the priority of VMs, and resource allocation. The proposed LB algorithm addresses the stated issues and the current research gap based on the literature's findings. Results showed that the proposed LB algorithm results in an average of 78% resource utilization compared to the existing Dynamic LBA algorithm. It also achieves good performance in terms of less Execution time and Makespan.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Data centers</subject><subject>Heuristic algorithms</subject><subject>Load balancing</subject><subject>Load management</subject><subject>Load modeling</subject><subject>makespan</subject><subject>Mathematical models</subject><subject>optimization</subject><subject>Parameters</subject><subject>Processor scheduling</subject><subject>QoS</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>SLA</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWBhjS_IBdBz7sdSdbXceumbWAhh-SQmxjJ0kaL13Jl7aH99XXiEDqXGR7vvZnhNc0NhS2lYL7uuu724WHLgNEtByk46A_NJaPSbLjg8uN_86fmep6PsJReIKEum6cd2WfsyTcccPRpPJDdcMgl1ecTibmQ-hzId6xIujDWEmZSM7mfajqlv4F0Qz73pMun6VxfpdM0JI815XH-3FxEHOZw_davmscft4_dr83-_uddt9tvfAu6bjRXTscQgvKAgUoaYh9kz9G1PbatUF5BpCw45oxzYEAYYNg7oXh0EflVc7fa9hmPdirphOWPzZjsK5DLwWKpyQ_BhsiC8KAVGt9KlE5ppVgEoXkP0vPF68vqNZX8-xzmao_5XMblessECAVGtmph8ZXlS57nEuL7Vgr2JRC7BmJfArFvgSyqm1WVll_fFYar1mjF_wGugIb2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shafiq, Dalia Abdulkareem</creator><creator>Jhanjhi, Noor Zaman</creator><creator>Abdullah, Azween</creator><creator>Alzain, Mohammed A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8116-4733</orcidid><orcidid>https://orcid.org/0000-0003-4425-8604</orcidid><orcidid>https://orcid.org/0000-0001-5595-4280</orcidid><orcidid>https://orcid.org/0000-0003-0061-0346</orcidid></search><sort><creationdate>2021</creationdate><title>A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications</title><author>Shafiq, Dalia Abdulkareem ; Jhanjhi, Noor Zaman ; Abdullah, Azween ; Alzain, Mohammed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-837b8feee7c0ae161efde6d3ab4da4457c70f12eb2b9bb0905902adb573fbfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Data centers</topic><topic>Heuristic algorithms</topic><topic>Load balancing</topic><topic>Load management</topic><topic>Load modeling</topic><topic>makespan</topic><topic>Mathematical models</topic><topic>optimization</topic><topic>Parameters</topic><topic>Processor scheduling</topic><topic>QoS</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>SLA</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiq, Dalia Abdulkareem</creatorcontrib><creatorcontrib>Jhanjhi, Noor Zaman</creatorcontrib><creatorcontrib>Abdullah, Azween</creatorcontrib><creatorcontrib>Alzain, Mohammed A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiq, Dalia Abdulkareem</au><au>Jhanjhi, Noor Zaman</au><au>Abdullah, Azween</au><au>Alzain, Mohammed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>41731</spage><epage>41744</epage><pages>41731-41744</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Despite the many past research conducted in the Cloud Computing field, some challenges still exist related to workload balancing in cloud-based applications and specifically in the Infrastructure as service (IaaS) cloud model. Efficient allocation of tasks is a crucial process in cloud computing due to the restricted number of resources/virtual machines. IaaS is one of the models of this technology that handles the backend where servers, data centers, and virtual machines are managed. Cloud Service Providers should ensure high service delivery performance in such models, avoiding situations such as hosts being overloaded or underloaded as this will result in higher execution time or machine failure, etc. Task Scheduling highly contributes to load balancing, and scheduling tasks much adheres to the requirements of the Service Level Agreement (SLA), a document offered by cloud developers to users. Important SLA parameters such as Deadline are addressed in the LB algorithm. The proposed algorithm is aimed to optimize resources and improve Load Balancing in view of the Quality of Service (QoS) task parameters, the priority of VMs, and resource allocation. The proposed LB algorithm addresses the stated issues and the current research gap based on the literature's findings. Results showed that the proposed LB algorithm results in an average of 78% resource utilization compared to the existing Dynamic LBA algorithm. It also achieves good performance in terms of less Execution time and Makespan.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3065308</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8116-4733</orcidid><orcidid>https://orcid.org/0000-0003-4425-8604</orcidid><orcidid>https://orcid.org/0000-0001-5595-4280</orcidid><orcidid>https://orcid.org/0000-0003-0061-0346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.41731-41744
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2505709647
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Cloud computing
Data centers
Heuristic algorithms
Load balancing
Load management
Load modeling
makespan
Mathematical models
optimization
Parameters
Processor scheduling
QoS
Resource allocation
Resource management
Resource utilization
SLA
Task analysis
Task scheduling
Virtual environments
title A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Load%20Balancing%20Algorithm%20for%20the%20Data%20Centres%20to%20Optimize%20Cloud%20Computing%20Applications&rft.jtitle=IEEE%20access&rft.au=Shafiq,%20Dalia%20Abdulkareem&rft.date=2021&rft.volume=9&rft.spage=41731&rft.epage=41744&rft.pages=41731-41744&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3065308&rft_dat=%3Cproquest_cross%3E2505709647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505709647&rft_id=info:pmid/&rft_ieee_id=9374987&rft_doaj_id=oai_doaj_org_article_ef2e5c087a9c46a6b78772f0583d06c3&rfr_iscdi=true