Associating physiological functions with genomic variability in hibernating bats
The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating Myotis myotis bats using double...
Gespeichert in:
Veröffentlicht in: | Evolutionary ecology 2021-04, Vol.35 (2), p.291-308 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 2 |
container_start_page | 291 |
container_title | Evolutionary ecology |
container_volume | 35 |
creator | Harazim, Markéta Piálek, Lubomír Pikula, Jiri Seidlová, Veronika Zukal, Jan Bachorec, Erik Bartonička, Tomáš Kokurewicz, Tomasz Martínková, Natália |
description | The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating
Myotis myotis
bats using double-digest restriction site-associated DNA sequencing and we associated the genomic variability with the observed phenotypes reflecting hibernation site preference, body condition and bat health during hibernation. We did not observe genotype associations between the detrended body condition index, representing fat reserves, and functional genes involved in fat metabolism. Bat body surface temperature, reflecting roost selection, or roost warmth relative to the climate at the site did not show any associations with the sampled genotypes. We found SNPs with associations to macroclimatic variables, characterising the hibernaculum, and blood biochemistry, related to health of the bat. The genes in proximity of the associated SNPs were involved in metabolism, immune response and signal transduction, including chaperones, apoptosis and autophagy regulators and immune signalling molecules. The genetic adaptations included adaptation to tissue repair and protection against tissue damage. |
doi_str_mv | 10.1007/s10682-020-10096-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2505578646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714109940</galeid><sourcerecordid>A714109940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ad4445fd74fa86fffef660e9bb033bc8abf9f9446c6d88dfcae9b2403ecf80e03</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKt_wNOC562zm2ySPZbiFxT0oOeQzSbblG1Sk63Sf2_qCkUQmcMwM-8zzPAidF3ArABgt7EAysscSshTXdOcnKBJUTGcc8LYKZpASeuc0Qqfo4sY1wCACaYT9DKP0SsrB-u6bLvaR-t731kl-8zsnBqsdzH7tMMq67TzG6uyDxmsbGxvh31mXbayjQ5u5Bs5xEt0ZmQf9dVPnqK3-7vXxWO-fH54WsyXucKcDrlsCSGVaRkxklNjjDaUgq6bBjBuFJeNqU1NCFW05bw1SqZZSQBrZThowFN0M-7dBv--03EQa79Lh_RRlBVUFeOU0KOqk70W1hk_BKk2NioxZwUpoK7JYdfsD1WKVqePvdPGpv4voBwBFXyMQRuxDXYjw14UIA6GiNEQkQwR34YIkiA8QjGJXafD8eJ_qC8kbI7N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505578646</pqid></control><display><type>article</type><title>Associating physiological functions with genomic variability in hibernating bats</title><source>SpringerLink (Online service)</source><creator>Harazim, Markéta ; Piálek, Lubomír ; Pikula, Jiri ; Seidlová, Veronika ; Zukal, Jan ; Bachorec, Erik ; Bartonička, Tomáš ; Kokurewicz, Tomasz ; Martínková, Natália</creator><creatorcontrib>Harazim, Markéta ; Piálek, Lubomír ; Pikula, Jiri ; Seidlová, Veronika ; Zukal, Jan ; Bachorec, Erik ; Bartonička, Tomáš ; Kokurewicz, Tomasz ; Martínková, Natália</creatorcontrib><description>The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating
Myotis myotis
bats using double-digest restriction site-associated DNA sequencing and we associated the genomic variability with the observed phenotypes reflecting hibernation site preference, body condition and bat health during hibernation. We did not observe genotype associations between the detrended body condition index, representing fat reserves, and functional genes involved in fat metabolism. Bat body surface temperature, reflecting roost selection, or roost warmth relative to the climate at the site did not show any associations with the sampled genotypes. We found SNPs with associations to macroclimatic variables, characterising the hibernaculum, and blood biochemistry, related to health of the bat. The genes in proximity of the associated SNPs were involved in metabolism, immune response and signal transduction, including chaperones, apoptosis and autophagy regulators and immune signalling molecules. The genetic adaptations included adaptation to tissue repair and protection against tissue damage.</description><identifier>ISSN: 0269-7653</identifier><identifier>EISSN: 1573-8477</identifier><identifier>DOI: 10.1007/s10682-020-10096-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Animal Ecology ; Apoptosis ; Autophagy ; Biomedical and Life Sciences ; Body temperature ; Cellular signal transduction ; Chaperones ; Chiroptera ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Ecology ; Evolutionary Biology ; Fat metabolism ; Genes ; Genomics ; Genotypes ; Hibernation ; Immune response ; Immune system ; Life Sciences ; Metabolism ; Nucleotides ; Original Paper ; Phagocytosis ; Phenotypes ; Physiological aspects ; Physiology ; Plant Sciences ; Regulators ; Signal transduction ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Stress (physiology) ; Surface temperature ; Variability</subject><ispartof>Evolutionary ecology, 2021-04, Vol.35 (2), p.291-308</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ad4445fd74fa86fffef660e9bb033bc8abf9f9446c6d88dfcae9b2403ecf80e03</citedby><cites>FETCH-LOGICAL-c386t-ad4445fd74fa86fffef660e9bb033bc8abf9f9446c6d88dfcae9b2403ecf80e03</cites><orcidid>0000-0002-5791-5338 ; 0000-0001-8747-9365 ; 0000-0003-4967-6880 ; 0000-0002-3906-2124 ; 0000-0003-1881-4646 ; 0000-0003-4556-4363 ; 0000-0002-8208-7589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10682-020-10096-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10682-020-10096-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Harazim, Markéta</creatorcontrib><creatorcontrib>Piálek, Lubomír</creatorcontrib><creatorcontrib>Pikula, Jiri</creatorcontrib><creatorcontrib>Seidlová, Veronika</creatorcontrib><creatorcontrib>Zukal, Jan</creatorcontrib><creatorcontrib>Bachorec, Erik</creatorcontrib><creatorcontrib>Bartonička, Tomáš</creatorcontrib><creatorcontrib>Kokurewicz, Tomasz</creatorcontrib><creatorcontrib>Martínková, Natália</creatorcontrib><title>Associating physiological functions with genomic variability in hibernating bats</title><title>Evolutionary ecology</title><addtitle>Evol Ecol</addtitle><description>The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating
Myotis myotis
bats using double-digest restriction site-associated DNA sequencing and we associated the genomic variability with the observed phenotypes reflecting hibernation site preference, body condition and bat health during hibernation. We did not observe genotype associations between the detrended body condition index, representing fat reserves, and functional genes involved in fat metabolism. Bat body surface temperature, reflecting roost selection, or roost warmth relative to the climate at the site did not show any associations with the sampled genotypes. We found SNPs with associations to macroclimatic variables, characterising the hibernaculum, and blood biochemistry, related to health of the bat. The genes in proximity of the associated SNPs were involved in metabolism, immune response and signal transduction, including chaperones, apoptosis and autophagy regulators and immune signalling molecules. The genetic adaptations included adaptation to tissue repair and protection against tissue damage.</description><subject>Adaptation</subject><subject>Animal Ecology</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Body temperature</subject><subject>Cellular signal transduction</subject><subject>Chaperones</subject><subject>Chiroptera</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fat metabolism</subject><subject>Genes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Hibernation</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Nucleotides</subject><subject>Original Paper</subject><subject>Phagocytosis</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant Sciences</subject><subject>Regulators</subject><subject>Signal transduction</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Stress (physiology)</subject><subject>Surface temperature</subject><subject>Variability</subject><issn>0269-7653</issn><issn>1573-8477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LAzEQhoMoWKt_wNOC562zm2ySPZbiFxT0oOeQzSbblG1Sk63Sf2_qCkUQmcMwM-8zzPAidF3ArABgt7EAysscSshTXdOcnKBJUTGcc8LYKZpASeuc0Qqfo4sY1wCACaYT9DKP0SsrB-u6bLvaR-t731kl-8zsnBqsdzH7tMMq67TzG6uyDxmsbGxvh31mXbayjQ5u5Bs5xEt0ZmQf9dVPnqK3-7vXxWO-fH54WsyXucKcDrlsCSGVaRkxklNjjDaUgq6bBjBuFJeNqU1NCFW05bw1SqZZSQBrZThowFN0M-7dBv--03EQa79Lh_RRlBVUFeOU0KOqk70W1hk_BKk2NioxZwUpoK7JYdfsD1WKVqePvdPGpv4voBwBFXyMQRuxDXYjw14UIA6GiNEQkQwR34YIkiA8QjGJXafD8eJ_qC8kbI7N</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Harazim, Markéta</creator><creator>Piálek, Lubomír</creator><creator>Pikula, Jiri</creator><creator>Seidlová, Veronika</creator><creator>Zukal, Jan</creator><creator>Bachorec, Erik</creator><creator>Bartonička, Tomáš</creator><creator>Kokurewicz, Tomasz</creator><creator>Martínková, Natália</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5791-5338</orcidid><orcidid>https://orcid.org/0000-0001-8747-9365</orcidid><orcidid>https://orcid.org/0000-0003-4967-6880</orcidid><orcidid>https://orcid.org/0000-0002-3906-2124</orcidid><orcidid>https://orcid.org/0000-0003-1881-4646</orcidid><orcidid>https://orcid.org/0000-0003-4556-4363</orcidid><orcidid>https://orcid.org/0000-0002-8208-7589</orcidid></search><sort><creationdate>20210401</creationdate><title>Associating physiological functions with genomic variability in hibernating bats</title><author>Harazim, Markéta ; Piálek, Lubomír ; Pikula, Jiri ; Seidlová, Veronika ; Zukal, Jan ; Bachorec, Erik ; Bartonička, Tomáš ; Kokurewicz, Tomasz ; Martínková, Natália</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ad4445fd74fa86fffef660e9bb033bc8abf9f9446c6d88dfcae9b2403ecf80e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Animal Ecology</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Body temperature</topic><topic>Cellular signal transduction</topic><topic>Chaperones</topic><topic>Chiroptera</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fat metabolism</topic><topic>Genes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Hibernation</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Nucleotides</topic><topic>Original Paper</topic><topic>Phagocytosis</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant Sciences</topic><topic>Regulators</topic><topic>Signal transduction</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Stress (physiology)</topic><topic>Surface temperature</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harazim, Markéta</creatorcontrib><creatorcontrib>Piálek, Lubomír</creatorcontrib><creatorcontrib>Pikula, Jiri</creatorcontrib><creatorcontrib>Seidlová, Veronika</creatorcontrib><creatorcontrib>Zukal, Jan</creatorcontrib><creatorcontrib>Bachorec, Erik</creatorcontrib><creatorcontrib>Bartonička, Tomáš</creatorcontrib><creatorcontrib>Kokurewicz, Tomasz</creatorcontrib><creatorcontrib>Martínková, Natália</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Evolutionary ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harazim, Markéta</au><au>Piálek, Lubomír</au><au>Pikula, Jiri</au><au>Seidlová, Veronika</au><au>Zukal, Jan</au><au>Bachorec, Erik</au><au>Bartonička, Tomáš</au><au>Kokurewicz, Tomasz</au><au>Martínková, Natália</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Associating physiological functions with genomic variability in hibernating bats</atitle><jtitle>Evolutionary ecology</jtitle><stitle>Evol Ecol</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>35</volume><issue>2</issue><spage>291</spage><epage>308</epage><pages>291-308</pages><issn>0269-7653</issn><eissn>1573-8477</eissn><abstract>The challenges of surviving periods of increased physiological stress elicit selective pressures that drive adaptations to overcome hardships. Bats in the Palearctic region survive winter in hibernation. We sampled single nucleotide polymorphisms (SNPs) in hibernating
Myotis myotis
bats using double-digest restriction site-associated DNA sequencing and we associated the genomic variability with the observed phenotypes reflecting hibernation site preference, body condition and bat health during hibernation. We did not observe genotype associations between the detrended body condition index, representing fat reserves, and functional genes involved in fat metabolism. Bat body surface temperature, reflecting roost selection, or roost warmth relative to the climate at the site did not show any associations with the sampled genotypes. We found SNPs with associations to macroclimatic variables, characterising the hibernaculum, and blood biochemistry, related to health of the bat. The genes in proximity of the associated SNPs were involved in metabolism, immune response and signal transduction, including chaperones, apoptosis and autophagy regulators and immune signalling molecules. The genetic adaptations included adaptation to tissue repair and protection against tissue damage.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10682-020-10096-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5791-5338</orcidid><orcidid>https://orcid.org/0000-0001-8747-9365</orcidid><orcidid>https://orcid.org/0000-0003-4967-6880</orcidid><orcidid>https://orcid.org/0000-0002-3906-2124</orcidid><orcidid>https://orcid.org/0000-0003-1881-4646</orcidid><orcidid>https://orcid.org/0000-0003-4556-4363</orcidid><orcidid>https://orcid.org/0000-0002-8208-7589</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7653 |
ispartof | Evolutionary ecology, 2021-04, Vol.35 (2), p.291-308 |
issn | 0269-7653 1573-8477 |
language | eng |
recordid | cdi_proquest_journals_2505578646 |
source | SpringerLink (Online service) |
subjects | Adaptation Animal Ecology Apoptosis Autophagy Biomedical and Life Sciences Body temperature Cellular signal transduction Chaperones Chiroptera Chromosomes Deoxyribonucleic acid DNA DNA sequencing Ecology Evolutionary Biology Fat metabolism Genes Genomics Genotypes Hibernation Immune response Immune system Life Sciences Metabolism Nucleotides Original Paper Phagocytosis Phenotypes Physiological aspects Physiology Plant Sciences Regulators Signal transduction Single nucleotide polymorphisms Single-nucleotide polymorphism Stress (physiology) Surface temperature Variability |
title | Associating physiological functions with genomic variability in hibernating bats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Associating%20physiological%20functions%20with%20genomic%20variability%20in%20hibernating%20bats&rft.jtitle=Evolutionary%20ecology&rft.au=Harazim,%20Mark%C3%A9ta&rft.date=2021-04-01&rft.volume=35&rft.issue=2&rft.spage=291&rft.epage=308&rft.pages=291-308&rft.issn=0269-7653&rft.eissn=1573-8477&rft_id=info:doi/10.1007/s10682-020-10096-4&rft_dat=%3Cgale_proqu%3EA714109940%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505578646&rft_id=info:pmid/&rft_galeid=A714109940&rfr_iscdi=true |