Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet
This work analyzes the linear stability of a thin second-grade liquid film flowing over a stretching sheet. The one-dimensional thin liquid film model of second-grade fluid based on long-wave theory is considered for this analysis. Taking into account the sinusoidal perturbation process, we carried...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2336 |
creator | Varghese, Abraham Sam Panda, Satyananda |
description | This work analyzes the linear stability of a thin second-grade liquid film flowing over a stretching sheet. The one-dimensional thin liquid film model of second-grade fluid based on long-wave theory is considered for this analysis. Taking into account the sinusoidal perturbation process, we carried out the linear stability analysis and obtained the linear growth rate, which defines the stability and instability of the fluid flow. Simulation results show the stabilizing effect on the flow for higher values of the second-grade non-Newtonian parameter, Froude number and the surface tension parameter. Furthermore, it is essential to note that the impact of the Froude number on the stability at high values of the second-grade parameter is very relevant. At the same time, at small parameter values of second grade, it has a feeble effect. |
doi_str_mv | 10.1063/5.0045754 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2505542086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505542086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-2e1e7eaa898a21a34f13b402db1ceb05b0f74ecd4ef3ac781f1c9a4f87eeef8e3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1ySab7FGKVqHgQQU9hezuS5uy3WyTtNJ_75YWvHl6MPPNwBuEbimZUFLkD2JCCBdS8DM0okLQTBa0OEcjQkqeMZ5_XaKrGFeEsFJKNULf78lUrnVpj01n2n10EXuL09J1uHWbrWuwde0a29b_HIwIte8avAimgUE8-H4HARscU4BUD7kFjkuAdI0urGkj3JzuGH0-P31MX7L52-x1-jjPelqolDGgIMEYVSrDqMm5pXnFCWsqWkNFREWs5FA3HGxuaqmopXVpuFUSAKyCfIzujr198JstxKRXfhuGX6JmggjBGVHFQN0fqVi7ZJLzne6DW5uw15Tow3Ra6NN0_8E7H_5A3Tc2_wVbonDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2505542086</pqid></control><display><type>conference_proceeding</type><title>Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet</title><source>AIP Journals Complete</source><creator>Varghese, Abraham Sam ; Panda, Satyananda</creator><contributor>Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</contributor><creatorcontrib>Varghese, Abraham Sam ; Panda, Satyananda ; Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</creatorcontrib><description>This work analyzes the linear stability of a thin second-grade liquid film flowing over a stretching sheet. The one-dimensional thin liquid film model of second-grade fluid based on long-wave theory is considered for this analysis. Taking into account the sinusoidal perturbation process, we carried out the linear stability analysis and obtained the linear growth rate, which defines the stability and instability of the fluid flow. Simulation results show the stabilizing effect on the flow for higher values of the second-grade non-Newtonian parameter, Froude number and the surface tension parameter. Furthermore, it is essential to note that the impact of the Froude number on the stability at high values of the second-grade parameter is very relevant. At the same time, at small parameter values of second grade, it has a feeble effect.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0045754</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Flow stability ; Fluid flow ; Froude number ; Parameters ; Perturbation ; Stability analysis ; Stretching ; Surface tension</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2336 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0045754$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930,76389</link.rule.ids></links><search><contributor>Panda, Satyananda</contributor><contributor>John, Sunil Jacob</contributor><contributor>Awasthi, Ashish</contributor><creatorcontrib>Varghese, Abraham Sam</creatorcontrib><creatorcontrib>Panda, Satyananda</creatorcontrib><title>Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet</title><title>AIP Conference Proceedings</title><description>This work analyzes the linear stability of a thin second-grade liquid film flowing over a stretching sheet. The one-dimensional thin liquid film model of second-grade fluid based on long-wave theory is considered for this analysis. Taking into account the sinusoidal perturbation process, we carried out the linear stability analysis and obtained the linear growth rate, which defines the stability and instability of the fluid flow. Simulation results show the stabilizing effect on the flow for higher values of the second-grade non-Newtonian parameter, Froude number and the surface tension parameter. Furthermore, it is essential to note that the impact of the Froude number on the stability at high values of the second-grade parameter is very relevant. At the same time, at small parameter values of second grade, it has a feeble effect.</description><subject>Computational fluid dynamics</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Froude number</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Stability analysis</subject><subject>Stretching</subject><subject>Surface tension</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1ySab7FGKVqHgQQU9hezuS5uy3WyTtNJ_75YWvHl6MPPNwBuEbimZUFLkD2JCCBdS8DM0okLQTBa0OEcjQkqeMZ5_XaKrGFeEsFJKNULf78lUrnVpj01n2n10EXuL09J1uHWbrWuwde0a29b_HIwIte8avAimgUE8-H4HARscU4BUD7kFjkuAdI0urGkj3JzuGH0-P31MX7L52-x1-jjPelqolDGgIMEYVSrDqMm5pXnFCWsqWkNFREWs5FA3HGxuaqmopXVpuFUSAKyCfIzujr198JstxKRXfhuGX6JmggjBGVHFQN0fqVi7ZJLzne6DW5uw15Tow3Ra6NN0_8E7H_5A3Tc2_wVbonDA</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Varghese, Abraham Sam</creator><creator>Panda, Satyananda</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210326</creationdate><title>Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet</title><author>Varghese, Abraham Sam ; Panda, Satyananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-2e1e7eaa898a21a34f13b402db1ceb05b0f74ecd4ef3ac781f1c9a4f87eeef8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Froude number</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Stability analysis</topic><topic>Stretching</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varghese, Abraham Sam</creatorcontrib><creatorcontrib>Panda, Satyananda</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varghese, Abraham Sam</au><au>Panda, Satyananda</au><au>Panda, Satyananda</au><au>John, Sunil Jacob</au><au>Awasthi, Ashish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-03-26</date><risdate>2021</risdate><volume>2336</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This work analyzes the linear stability of a thin second-grade liquid film flowing over a stretching sheet. The one-dimensional thin liquid film model of second-grade fluid based on long-wave theory is considered for this analysis. Taking into account the sinusoidal perturbation process, we carried out the linear stability analysis and obtained the linear growth rate, which defines the stability and instability of the fluid flow. Simulation results show the stabilizing effect on the flow for higher values of the second-grade non-Newtonian parameter, Froude number and the surface tension parameter. Furthermore, it is essential to note that the impact of the Froude number on the stability at high values of the second-grade parameter is very relevant. At the same time, at small parameter values of second grade, it has a feeble effect.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0045754</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2021, Vol.2336 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2505542086 |
source | AIP Journals Complete |
subjects | Computational fluid dynamics Flow stability Fluid flow Froude number Parameters Perturbation Stability analysis Stretching Surface tension |
title | Stability analysis of thin liquid film flow of second grade fluid over a stretching sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20thin%20liquid%20film%20flow%20of%20second%20grade%20fluid%20over%20a%20stretching%20sheet&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Varghese,%20Abraham%20Sam&rft.date=2021-03-26&rft.volume=2336&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0045754&rft_dat=%3Cproquest_scita%3E2505542086%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505542086&rft_id=info:pmid/&rfr_iscdi=true |